Multidimensional Scaling for large datasets

Cristian Pachón-García

(joint work with Pedro Delicado)

Universitat Politècnica de Catalunya

GRBIO, 12 July 2024

[Multidimensional Scaling for large datasets 1/34](#page-55-0) Cristian Pachón-García

 Ω

∢ロ ▶ ∢母 ▶ ∢ ヨ ▶ ∢ ヨ ▶ ↓

1 [Introduction to Multidimensional Scaling](#page-2-0)

2 [Algorithms for MDS with Big Data](#page-10-0)

3 [A simulation study](#page-43-0)

4 [A real case: The EMNIST data set](#page-47-0)

[Multidimensional Scaling for large datasets 2/34](#page-0-0) Cristian Pachón-García

∍

 2990

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \pmod{2} \mathbf{A} + \mathbf{A} \equiv \mathbf{A} + \mathbf{A} \equiv \mathbf{A} + \mathbf{A}$

1 [Introduction to Multidimensional Scaling](#page-2-0)

[Algorithms for MDS with Big Data](#page-10-0)

[A simulation study](#page-43-0)

4 [A real case: The EMNIST data set](#page-47-0)

[Multidimensional Scaling for large datasets 3/34](#page-0-0) Services 3/34 Cristian Pachón-García

э

 2990

イロメ イ団メ イミメ イモメー

[Introduction to MDS](#page-2-0) [Algorithms for MDS with Big Data](#page-10-0) [A simulation study](#page-43-0) [A real case: The EMNIST data set](#page-47-0) Concessore conclusions References [Conclusions](#page-50-0) [References](#page-54-0) Conclusions References Conclusions References References 000

Introduction to Multidimensional Scaling

\Rightarrow From coordinates to distances \Rightarrow

 \Leftarrow From distances to coordinates \Leftarrow

Multidimensional Scaling:

Dimensionality reduction based on inter-individual distances

 200

イロト イ押 トイヨ トイヨ トー

Multidimensional Scaling (MDS)

- MDS is a family of dimensionality reduction techniques.
- Input: **D**, a $n \times n$ distance matrix between *n* observed objects, $\mathcal{O}_1, \ldots, \mathcal{O}_n$, elements of a metric space Ω equipped with a distance function d:

$$
d_{ij}=d(\mathcal{O}_i,\mathcal{O}_j).
$$

• Output: X , a $n \times q$ matrix, q small, a low-dimensional **configuration** for **D**, with rows \mathbf{x}_i^T , $i = 1, \ldots, n$, such that

$$
\delta_{ij} \approxeq d_{ij}
$$

where $\delta_{ii} = ||\mathbf{x}_i - \mathbf{x}_i||$.

• MDS: From distances to coordinates.

[Multidimensional Scaling for large datasets 5/34](#page-0-0) Share Cristian Pachón-García

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → 9 Q @

Classical metric scaling

- Define the $n \times n$ matrix $\mathcal D$ with element (i, j) equal to d_{ij}^2 .
- Let $\mathbf{H} = \mathbf{I}_n (1/n)\mathbf{1}_n\mathbf{1}_n^T$ be the $n \times n$ centering matrix.
- Then $\mathbf{Q} = -\frac{1}{2}\mathbf{H}\mathcal{D}\mathbf{H}$ is the *inner products* matrix.
- Take the spectral decomposition $Q = V \Lambda V^{T}$.
	- Attention: In general cases, some eigenvalues can be negative.
	- Assume that $\lambda_1 \geq \ldots \geq \lambda_q > 0$.
- \bullet Define $\tilde{\bm{\mathsf{X}}}_q = \bm{\mathsf{V}}_q \Lambda_q^{1/2}$, where $\bm{\mathsf{V}}_q$ is formed by the first q columns of **V** and $\Lambda_a = diag(\lambda_1, \ldots, \lambda_a)$.
- \bullet Then $\mathbf{Q}\approx\mathbf{\tilde{X}}_q\tilde{\mathbf{X}}_q^\intercal$ and $\mathbf{\tilde{X}}_q$ is the q -dimensional configuration obtained from D.

Example

Consider the distance between some cities of Europe, as shown in the following matrix:

Table: Distances between European cities (just 5 of them are shown).

[Multidimensional Scaling for large datasets 7/34](#page-0-0) Cristian Pachón-García

 2990

Figure: Two MDS configurations for European cities.

Multidimensional Scaling for large datasets

Cristian Pachón-García

∍

 299

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

[Introduction to MDS](#page-2-0) [Algorithms for MDS with Big Data](#page-10-0) [A simulation study](#page-43-0) [A real case: The EMNIST data set](#page-47-0) [Conclusions](#page-50-0) [References](#page-54-0) A simulation study A real case: The EMNIST data set Conclusions References A conclusions R 000000 000

Non-classical metric scaling

- Let $\mathbf{D} = (d_{ij})_{i,j=1}^n$ be the inter-individual distance matrix.
- Fix a tentative dimension q and a $n \times q$ matrix **X**. Let $\delta_{ij} = ||\mathbf{x}_i - \mathbf{x}_j||$, the Euclidean norm between rows i and j of **X**.
- Metric STRESS (STandardized REsidual Sum of Squares):

$$
\text{STRESS}_M(\mathbf{D}, \mathbf{X}) = \frac{\sum_{i < j} (\delta_{ij} - d_{ij})^2}{\sum_{i < j} d_{ij}^2}.
$$

It is a measure of the relative error made when matrix X is considered as a configuration for the distance matrix D.

• Non-classical metric scaling problem:

$$
\min_{\mathbf{X} \in \mathbb{R}^{n \times q}} \text{STRESS}_M(\mathbf{D}, \mathbf{X}).
$$

[Multidimensional Scaling for large datasets 9/34](#page-0-0) Services of the Cristian Pachón-García

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ - 할 → 9 Q @

[Introduction to MDS](#page-2-0) [Algorithms for MDS with Big Data](#page-10-0) [A simulation study](#page-43-0) [A real case: The EMNIST data set](#page-47-0) [Conclusions](#page-50-0) Conclusions [References](#page-54-0) Conclusions References Conclusions References Conclusions References References Re 0000000 000

MDS for Big Data

- When *n* is large, standard MDS algorithms are prohibitively memory and time consuming.
- Classical metric scaling:
	- MDS depends on eigendecomposition. The cost of it is $O(n^3)$ [\(Trefethen and Bau 1997\)](#page-55-1).
	- It needs to store a n^2 distance matrix.
- Non-classical metric scaling: Optimization problem.
	- Number of decision variables: $O(n)$.
	- Evaluation of the objective variable, cost $O(n^2)$.
	- It needs to store a n^2 distance matrix.
	- Two algorithms with cost $O(n^2)$:
		- Majorization algorithm (SMACOF; [Borg and Groenen 2005\)](#page-54-1). Better using the classic MDS configuration as starting point.
		- Stochastic gradient descent, [Zheng, Pawar, and Goodman](#page-55-2) [\(2019\)](#page-55-2). See also Börsig, Brandes, and Pasztor (2020).

[Multidimensional Scaling for large datasets 10/34](#page-0-0) Cristian Pachón-García

YO A HE YEAR A BY YOUR

[Introduction to MDS](#page-2-0) [Algorithms for MDS with Big Data](#page-10-0) [A simulation study](#page-43-0) [A real case: The EMNIST data set](#page-47-0) [Conclusions](#page-50-0) Conclusions [References](#page-54-0) Conclusions References Conclusions References Conclusions References Conclusions R

[A simulation study](#page-43-0)

4 [A real case: The EMNIST data set](#page-47-0)

Multidimensional Scaling for large datasets and 11/34 Cristian Pachón-García

э

 2990

イロト イ押 トイヨ トイヨ トー

Algorithms for MDS with Big Data

- Several algorithms have appeared in the field of MDS as well as in that of graph viewing.
- \bullet Delicado and Pachón-García $(2024)^1$ review some of them and introduce two new proposals.
- Detailed analysis is given for 6 algorithms:
	- Existing algorithms:
		- Landmark MDS [\(De Silva and Tenenbaum 2004,](#page-54-4) LMDS).
		- Fast MDS [\(Yang, Liu, McMillan, and Wang 2006\)](#page-55-3).
		- Pivot MDS [\(Brandes and Pich 2007\)](#page-54-5).
		- Reduced MDS [\(Paradis 2021,](#page-55-4) RMDS).
	- Our proposals:
		- Divide-and-conquer MDS
		- Interpolation MDS
- All of them have computing time $O(n)$, except Fast MDS which is $O(n \log n)$.

1 Delicado, P., Pachón-García, C. (2024) Multidimensional scaling for bi[g d](#page-10-0)at[a.](#page-12-0) [Ad](#page-10-0)[v.](#page-11-0) [Da](#page-12-0)[ta](#page-9-0) [A](#page-10-0)[n](#page-42-0)[al.](#page-43-0)[Cl](#page-10-0)[as](#page-42-0)[sif.](#page-43-0) [10.1007/s11634-024-00591-9](https://doi.org/10.1007/s11634-024-00591-9) ∢ロト ∢母 ト ∢ ヨ ト ∢ ヨ ト

[Multidimensional Scaling for large datasets 12/34](#page-0-0) Cristian Pachón-García

 200

These algorithms use one of two different approaches:

- **1** Select a moderated large subset of subjects, run MDS on that subset to obtain a low-dimensional configuration for it, and then project all other subjects into that configuration:
	- Landmark MDS
	- Interpolation MDS
	- Reduced MDS
	- Pivot MDS

Note: They were designed to be used with Classical MDS.

- **2** Divide the data set into many moderated large subsets of subjects, run MDS on each subset to obtain the corresponding many low-dimensional configurations, and then combine them to create a unique global configuration:
	- Divide-and-conquer MDS
	- Fast MDS (recursive)

Note: They can be easily adapted to any MDS technique.

KEL KALK KELKEL KARK

Interpolation MDS

- Select ℓ random elements of the data set $(\ell << n)$.
- Perform classical MDS over this subset.
- Extend the obtained results to the rest of data set, in blocks of ℓ data, by using Gower's interpolation formula [\(Gower 1968\)](#page-54-6).

イロト イ押 トイヨ トイヨ トー

Ξ.

 200

Gower's interpolation: Where to place a new point \mathbf{Q} ?

Multidimensional Scaling for large datasets

Cristian Pachón-García

 200

Gower's interpolation: Where to place a new point Q?

Three points, exact distances $d(Q, P_i)$.

[Multidimensional Scaling for large datasets 15/34](#page-0-0) Cristian Pachón-García

 2990

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Gower's interpolation: Where to place a new point Q?

Three points, exact distances $d(Q, P_i)$.

[Multidimensional Scaling for large datasets 15/34](#page-0-0) Cristian Pachón-García

化重复化重复

 2990

Kロト K同下

A simulation study A real case: The EMNIST data set Con-Introduction to MDS Algorithms for MDS with Big Data 00000000 \circ 000

Gower's interpolation: Where to place a new point \mathbf{Q} ?

Three points, approximate distances $d(Q, P_i)$.

Multidimensional Scaling for large datasets

Cristian Pachón-García

 200

イロト イ押 トイヨ トイヨ トー

Multidimensional Scaling for large datasets and 15/34 Cristian Pachón-García

 Ω

Three points, approximate distances $d(Q, P_i)$.

[Multidimensional Scaling for large datasets 15/34](#page-0-0) Cristian Pachón-García

 2990

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Three points, approximate distances $d(Q, P_i)$.

[Multidimensional Scaling for large datasets 15/34](#page-0-0) Cristian Pachón-García

 2990

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

n points, approximate distances $d(Q, P_i)$.

Multidimensional Scaling for large datasets

Cristian Pachón-García

 Ω

K ロ ▶ K 母 ▶ K ヨ

n points, approximate distances $d(Q, P_i)$.

Multidimensional Scaling for large datasets

Cristian Pachón-García

 Ω

 4 H \rightarrow 4 H \rightarrow 4 H \rightarrow 4 H \rightarrow

n points, approximate distances $d(Q, P_i)$.

Multidimensional Scaling for large datasets

Cristian Pachón-García

 2990

メロトス 伊 トス 重 トス 重 ト

n points, approximate distances $d(Q, P_i)$.

Multidimensional Scaling for large datasets

Cristian Pachón-García

 2990

メロトス 伊 トス 重 トス 重 ト

Three related algorithms

Proposition

Distance-based triangulation procedure used in LMDS coincides with Gower's interpolation formula.

Different selection of the initial data subset:

- LMDS uses a MaxMin greedy optimization procedure.
- Interpolation MDS, random selection.
- RMDS, heuristic rules to ensure both central and peripheral data.

三 一 200

≮ロト ⊀何ト ⊀ ヨト ⊀ ヨト

Pivot MDS [\(Brandes and Pich 2007\)](#page-54-5).

- It is an approximation of classical MDS, based on the selection of a subset of ℓ pivot points.
- Let C be the $n \times \ell$ submatrix of Q containing the inner products between the pivot points and all the other points.
- The SVD of C is used to approximate that of Q , whose q first eigenvectors are the pivot MDS low dimensional configuration.
- Recall that LMDS, interpolation MDS, and reduced MDS are based on the eigendecomposition of the $\ell \times \ell$ submatrix of Q containing only inner products of landmark points.

 200

≮ロト ⊀何ト ⊀ ヨト ⊀ ヨト

Pivot MDS [\(Brandes and Pich 2007\)](#page-54-5).

- It is an approximation of classical MDS, based on the selection of a subset of ℓ pivot points.
- Let C be the $n \times \ell$ submatrix of Q containing the inner products between the pivot points and all the other points.
- The SVD of C is used to approximate that of Q , whose q first eigenvectors are the pivot MDS low dimensional configuration.
- Recall that LMDS, interpolation MDS, and reduced MDS are based on the eigendecomposition of the $\ell \times \ell$ submatrix of Q containing only inner products of landmark points.

Multidimensional Scaling for large datasets and the 17/34 Cristian Pachón-García

つくへ

Divide-and-conquer MDS

- The large data set is divided into small parts with ℓ individuals $(\ell << n)$.
- All parts have c individuals in common (connecting points).
- MDS is performed over every part.
- The partial configurations are combined so that all the points lie on the same coordinate system.
- Connections are done one at a time by a Procrustes transformation [\(Borg and](#page-54-1) [Groenen 2005,](#page-54-1) Chapter 20) of the c connecting points.

[Multidimensional Scaling for large datasets 18/34](#page-0-0) Cristian Pachón-García

 Ω

イロト イ押 トイヨ トイヨト

Procrustes transformation

Two partial configurations from two non-linked data subsets $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Multidimensional Scaling for large datasets

э Cristian Pachón-García

 Ω

 \mathbf{h}

Procrustes transformation

Two partial configurations: Multiple relative positions are possible $A \equiv 1$

Multidimensional Scaling for large datasets

Cristian Pachón-García

Procrustes transformation

Two partial configurations from two non-linked data subsets $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Multidimensional Scaling for large datasets

э Cristian Pachón-García

 Ω

 \mathbf{h}

Procrustes transformation

Two partial configurations: connecting points included i mis

Multidimensional Scaling for large datasets

Cristian Pachón-García

 \mathbf{h}

Procrustes transformation

Compute the rigid transformation linking the connecting points

Multidimensional Scaling for large datasets

Cristian Pachón-García

 OQ

Procrustes transformation

Compute the rigid transformation linking the connecting points (□) (何) (三) (三) (三)

Multidimensional Scaling for large datasets

Cristian Pachón-García

Procrustes transformation

Compute the rigid transformation linking the connecting points (□) (何) (三) (三) (三)

Multidimensional Scaling for large datasets

 $19/34$

Cristian Pachón-García

 η q α

Procrustes transformation

Apply the Procrustes transformation to the entire configuration 2 E

 \mathbf{h}

Procrustes transformation

Apply the Procrustes transformation to the entire configuration 2 E

Multidimensional Scaling for large datasets

Cristian Pachón-García

 \mathbf{h}

Procrustes transformation

Apply the Procrustes transformation to the entire configuration 2 **A** E

Multidimensional Scaling for large datasets

Cristian Pachón-García

Procrustes transformation

A common configuration for two subsets, with connecting points **K ロ ▶ K 何 ▶ K ミ ▶ K ミ ▶** ∴ ≊

[Introduction to MDS](#page-2-0) [Algorithms for MDS with Big Data](#page-10-0) [A simulation study](#page-43-0) [A real case: The EMNIST data set](#page-47-0) [Conclusions](#page-50-0) Conclusions [References](#page-54-0) Conclusions References Conclusions References Conclusions References Conclusions R 00000000 000 \circ

Fast MDS [\(Yang, Liu, McMillan, and Wang 2006\)](#page-55-3). It overcomes the problem of MDS scalability using recursive programming in combination with a data set splitting strategy.

Procrustes transformations are used at each recursive step to connect the low dimensional configurations obtained for different subsets.

[Multidimensional Scaling for large datasets 20/34](#page-0-0) Cristian Pachón-García

 Ω

化重新润滑脂

bigmds: An R package to do MDS with big data

- We published an R package in CRAN in 2021: <https://cran.r-project.org/web/packages/bigmds>.
- 14000 downloads since then.
- The core of the package consists of six methods:
	- landmark mds
	- interpolation mds
	- reduced mds
	- pivot_mds
	- divide_and_conquer_mds
	- fast mds
- We also implemented a Procrustes function.
- Instead of using cmdscale function for classical MDS, we use trlan.eigen function (from svd package) to perform the spectral decomposition of matrices containing inner products: 8 seconds against 15 minutes for sampl[e s](#page-41-0)i[ze](#page-43-0) $n = 10000$ $n = 10000$ [.](#page-42-0)

[Multidimensional Scaling for large datasets 21/34](#page-0-0) Cristian Pachón-García

 \circ

1 [Introduction to Multidimensional Scaling](#page-2-0)

3 [A simulation study](#page-43-0)

4 [A real case: The EMNIST data set](#page-47-0)

Multidimensional Scaling for large datasets and 22/34 Cristian Pachón-García

э

 2990

イロト イ押 トイヨ トイヨ トー

[Introduction to MDS](#page-2-0) [Algorithms for MDS with Big Data](#page-10-0) **[A simulation study](#page-43-0)** [A real case: The EMNIST data set](#page-47-0) [Conclusions](#page-50-0) Conclusions [References](#page-54-0) Conclusions References Conclusions References Conclusions References Conclusions 00000000 000 \circ

A simulation study

Simulation design:

- Sample size: 5000, 10000, 20000, 100000, 250000, 500000, 750000, and 1000000.
- Data dimension: 10 or 100.
- *Dominant dimensions:* 2 or 10, the number of columns with a variance much higher than the variance of the remaining *noisy* dimensions.
- A total of 32 scenarios, each replicated 100 times.

 Ω

∢ロ ▶ ∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶ ...

Correlation with the true main dimensions

Quantiles of order 2.5% ($q_{0.025}$) and 97.5% ($q_{0.975}$), and mean values for the correlation coefficients between the original variables and the ones recovered by the six MDS methods.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ - 할 → 9 Q @

Results on computing time

Elapsed time (in seconds)

K ロ ▶ K 何 ▶

[Multidimensional Scaling for large datasets 25/34](#page-0-0) 25/34 Cristian Pachón-García

∍

化重新润滑脂

 299

[Introduction to MDS](#page-2-0) [Algorithms for MDS with Big Data](#page-10-0) [A simulation study](#page-43-0) [A real case: The EMNIST data set](#page-47-0) [Conclusions](#page-50-0) Cooperaces A simulation study A real case: The EMNIST data set Conclusions Cooperaces and a conclusions R

1 [Introduction to Multidimensional Scaling](#page-2-0)

[Algorithms for MDS with Big Data](#page-10-0)

[A simulation study](#page-43-0)

4 [A real case: The EMNIST data set](#page-47-0)

Multidimensional Scaling for large datasets $26/34$ 26/34 Cristian Pachón-García

э

 2990

イロン イ団 メイモン イモン

A real case: The EMNIST data set

- The EMNIST data set [\(Cohen, Afshar, Tapson, and van](#page-54-7) [Schaik 2017\)](#page-54-7) is composed by handwritten character digits, lowercase letters and capital letters.
- In total, there are 814,255 images divided into 62 classes:
	- 10 digits (from '0' to '9'; the 49.5% of the total).
	- 26 lowercase letters (from 'a' to 'z'; 23.5%).
	- 26 capital letters (from 'A' to 'Z'; 27%).
- Each image is of size 28×28 .

 Ω

∢ロ ▶ ∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶ ...

 2990

メロメメ 御 メメ きょくきょ

1 [Introduction to Multidimensional Scaling](#page-2-0)

[Algorithms for MDS with Big Data](#page-10-0)

[A simulation study](#page-43-0)

4 [A real case: The EMNIST data set](#page-47-0)

[Multidimensional Scaling for large datasets 29/34](#page-0-0) 29/34 Cristian Pachón-García

э

 2990

イロト イ押 トイヨ トイヨト

Conclusions and additional comments

- The standard MDS algorithms are not able to deal with large datasets: problems in memory and/or computing time.
- There are algorithms to overcome these difficulties.
- Two approaches: Gower's interp., or Procrustes transf.
- We have presented six of these algorithms, as well as a package in R: **bigmds**.
- In our simulation study:
	- The six MDS algorithms provide low-dimensional configurations similar to those eventually given by the classical MDS algorithm.
	- Interpolation MDS is the fastest method.
	- LMDS and pivot MDS could present memory problems.

[Multidimensional Scaling for large datasets 30/34](#page-0-0) Cristian Pachón-García

KED KAP KED KED E LAQO

Additional comments

- Further research:
	- To combine these algorithms with other dimensionality reduction methods.
	- Non-classical metric scaling, Local MDS, ISOMAP, t-SNE, UMAP, among other.
- Alternative dimensionality reduction tools in R:
	- dimRed [\(Kraemer, Reichstein, and Mahecha 2018\)](#page-55-5) 18 methods.
	- Rdimtools [\(You and Shung 2022\)](#page-55-6) 143 methods. Very fast (it uses a C_{++} linear algebra library).

[Multidimensional Scaling for large datasets 31/34](#page-0-0) Services 2012 Cristian Pachón-García

 Ω

イロト イ押 トイヨト イヨト 一国

Thank You!

Multidimensional Scaling for large datasets

Cristian Pachón-García

Borg, I. and P. Groenen (2005). Modern Multidimensional Scaling: Theory and Applications. Springer.

Börsig, K., U. Brandes, and B. Pasztor (2020). Stochastic gradient descent works really well for stress minimization. In D. Auber and P. Valtr (Eds.), Graph Drawing and Network Visualization, Cham, pp. 18-25. Springer International Publishing.

Brandes, U. and C. Pich (2007).

Eigensolver methods for progressive multidimensional scaling of large data.

In M. Kaufmann and D. Wagner (Eds.), Graph Drawing, Berlin, Heidelberg, pp. 42–53. Springer Berlin Heidelberg.

Cohen, G., S. Afshar, J. Tapson, and A. van Schaik (2017). Emnist: Extending mnist to handwritten letters. In 2017 International Joint Conference on Neural Networks (IJCNN), pp. 2921–2926.

De Silva, V. and J. B. Tenenbaum (2004). Sparse multidimensional scaling using landmark points. Technical report, Technical Report, Stanford University.

Delicado, P. and C. Pachón-García (2024). Multidimensional scaling for big data. Advances in Data Analysis and Classification Available online(Open access), 1–22.

Gower, J. C. (1968). Adding a point to vector diagrams in multivariate analysis. Biometrika 55(3), 582––585.

[Multidimensional Scaling for large datasets 33/34](#page-0-0) Cristian Pachón-García

 200

イロト イ押 トイヨ トイヨ トー

Kraemer, G., M. Reichstein, and M. D. Mahecha (2018). dimRed and coRanking—unifying dimensionality reduction in r. The R Journal 10(1), 342–358. coRanking version 0.2.6.

Paradis, E. (2021). Reduced multidimensional scaling. Computational Statistics 37, 91–105.

Trefethen, L. N. and D. Bau (1997). Numerical Linear Algebra. Society for Industrial and Applied Mathematics.

Yang, T., J. Liu, L. McMillan, and W. Wang (2006). A fast approximation to multidimensional scaling.

In Proceedings of the ECCV Workshop on Computation Intensive Methods for Computer Vision (CIMCV).

You, K. and D. Shung (2022). Rdimtools: An R package for dimension reduction and intrinsic dimension estimation. Software Impacts 14, 100414.

Zheng, J. X., S. Pawar, and D. F. M. Goodman (2019). Graph drawing by stochastic gradient descent. IEEE Transactions on Visualization and Computer Graphics 25 (9), 2738–2748.

[Multidimensional Scaling for large datasets 34/34](#page-0-0) Cristian Pachón-García

 Ω

イロト イ押 トイヨ トイヨト