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Introduction to Multidimensional Scaling

⇒ From coordinates to distances ⇒

⇒

⇐

⇐ From distances to coordinates ⇐

Multidimensional Scaling:
Dimensionality reduction based on inter-individual distances

Multidimensional Scaling for large datasets 4/34 Cristian Pachón-Garćıa
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Multidimensional Scaling (MDS)

• MDS is a family of dimensionality reduction techniques.

• Input: D, a n× n distance matrix between n observed objects,
O1, . . . ,On, elements of a metric space Ω equipped with a
distance function d :

dij = d(Oi ,Oj).

• Output: X, a n × q matrix, q small, a low-dimensional
configuration for D, with rows xT

i , i = 1, . . . , n, such that

δij u dij

where δij = ‖xi − xi‖.
• MDS: From distances to coordinates.
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Classical metric scaling

• Define the n × n matrix D with element (i , j) equal to d2
ij .

• Let H = In − (1/n)1n1T
n be the n × n centering matrix.

• Then Q = −1
2HDH is the inner products matrix.

• Take the spectral decomposition Q = VΛVT.
• Attention: In general cases, some eigenvalues can be negative.
• Assume that λ1 ≥ . . . ≥ λq > 0.

• Define X̃q = VqΛ
1/2
q , where Vq is formed by the first q

columns of V and Λq = diag(λ1, . . . , λq).

• Then Q ≈ X̃qX̃T
q and X̃q is the q-dimensional configuration

obtained from D.
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Example

Consider the distance between some cities of Europe, as shown in
the following matrix:

Athens Barcelona Brussels Calais Cherbourg · · ·
Athens 0 3313 2963 3175 3339 · · ·

Barcelona 3313 0 1318 1326 1294 · · ·
Brussels 2963 1318 0 204 583 · · ·

Calais 3175 1326 204 0 460 · · ·
Cherbourg 3339 1294 583 460 0 · · ·

...
...

...
...

...
...

. . .

Table: Distances between European cities (just 5 of them are shown).
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Figure: Two MDS configurations for European cities.
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Non-classical metric scaling

• Let D = (dij)
n
i ,j=1 be the inter-individual distance matrix.

• Fix a tentative dimension q and a n × q matrix X. Let
δij = ‖xi − xj‖, the Euclidean norm between rows i and j of X.

• Metric STRESS (STandardized REsidual Sum of Squares):

STRESSM(D,X) =

∑
i<j(δij − dij)

2∑
i<j d

2
ij

.

It is a measure of the relative error made when matrix X is
considered as a configuration for the distance matrix D.

• Non-classical metric scaling problem:

min
X∈Rn×q

STRESSM(D,X).
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MDS for Big Data

• When n is large, standard MDS algorithms are prohibitively
memory and time consuming.
• Classical metric scaling:

• MDS depends on eigendecomposition. The cost of it is O(n3)
(Trefethen and Bau 1997).

• It needs to store a n2 distance matrix.

• Non-classical metric scaling: Optimization problem.
• Number of decision variables: O(n).
• Evaluation of the objective variable, cost O(n2).
• It needs to store a n2 distance matrix.
• Two algorithms with cost O(n2):

• Majorization algorithm (SMACOF; Borg and Groenen 2005).
Better using the classic MDS configuration as starting point.

• Stochastic gradient descent, Zheng, Pawar, and Goodman
(2019). See also Börsig, Brandes, and Pasztor (2020).
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Algorithms for MDS with Big Data
• Several algorithms have appeared in the field of MDS as well

as in that of graph viewing.
• Delicado and Pachón-Garćıa (2024)1 review some of them and

introduce two new proposals.
• Detailed analysis is given for 6 algorithms:

• Existing algorithms:
• Landmark MDS (De Silva and Tenenbaum 2004, LMDS).
• Fast MDS (Yang, Liu, McMillan, and Wang 2006).
• Pivot MDS (Brandes and Pich 2007).
• Reduced MDS (Paradis 2021, RMDS).

• Our proposals:
• Divide-and-conquer MDS
• Interpolation MDS

• All of them have computing time O(n), except Fast MDS
which is O(n log n).

1
Delicado, P., Pachón-Garćıa, C. (2024) Multidimensional scaling for big data. Adv. Data Anal. Classif.

10.1007/s11634-024-00591-9
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These algorithms use one of two different approaches:

1 Select a moderated large subset of subjects, run MDS on that
subset to obtain a low-dimensional configuration for it, and
then project all other subjects into that configuration:
• Landmark MDS
• Interpolation MDS
• Reduced MDS
• Pivot MDS

Note: They were designed to be used with Classical MDS.

2 Divide the data set into many moderated large subsets of
subjects, run MDS on each subset to obtain the corresponding
many low-dimensional configurations, and then combine them
to create a unique global configuration:
• Divide-and-conquer MDS
• Fast MDS (recursive)

Note: They can be easily adapted to any MDS technique.
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Interpolation MDS

• Select ` random elements of the data
set (` << n).

• Perform classical MDS over this
subset.

• Extend the obtained results to the rest
of data set, in blocks of ` data, by
using Gower’s interpolation formula
(Gower 1968).
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Gower’s interpolation: Where to place a new point Q?

P1

P2

P3

Three points, exact distances d(Q,Pi ).
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Gower’s interpolation: Where to place a new point Q?

P1

P2

P3

Three points, approximate distances d(Q,Pi ).
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Introduction to MDS Algorithms for MDS with Big Data A simulation study A real case: The EMNIST data set Conclusions References

Gower’s interpolation: Where to place a new point Q?

P1

P2

P3

d(Q,P1)

d(Q,P2)

d(Q,P3)

Three points, approximate distances d(Q,Pi ).

Multidimensional Scaling for large datasets 15/34 Cristian Pachón-Garćıa
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Gower’s interpolation: Where to place a new point Q?

n points, approximate distances d(Q,Pi ).

Multidimensional Scaling for large datasets 15/34 Cristian Pachón-Garćıa
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Gower’s interpolation: Where to place a new point Q?

Q

n points, approximate distances d(Q,Pi ).
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Three related algorithms
Landmark MDS Interpolation MDS Reduced MDS

Proposition

Distance-based triangulation procedure used in LMDS coincides
with Gower’s interpolation formula.

Different selection of the initial data subset:

• LMDS uses a MaxMin greedy optimization procedure.

• Interpolation MDS, random selection.

• RMDS, heuristic rules to ensure both central and peripheral data.
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Pivot MDS (Brandes and Pich 2007).

• It is an approximation of classical MDS, based on the
selection of a subset of ` pivot points.

• Let C be the n × ` submatrix of Q containing the inner
products between the pivot points and all the other points.

• The SVD of C is used to approximate that of Q, whose q first
eigenvectors are the pivot MDS low dimensional configuration.

• Recall that LMDS, interpolation MDS, and reduced MDS are
based on the eigendecomposition of the `× ` submatrix of Q
containing only inner products of landmark points.
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Divide-and-conquer MDS

• The large data set is divided into small parts
with ` individuals (` << n).

• All parts have c individuals in common
(connecting points).

• MDS is performed over every part.

• The partial configurations are combined so
that all the points lie on the same coordinate
system.

• Connections are done one at a time by a
Procrustes transformation (Borg and
Groenen 2005, Chapter 20) of the c
connecting points.
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Procrustes transformation

Two partial configurations from two non-linked data subsets
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Procrustes transformation

Two partial configurations: Multiple relative positions are possible
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Procrustes transformation

Two partial configurations: connecting points included
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Procrustes transformation

Compute the rigid transformation linking the connecting points
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Procrustes transformation

Apply the Procrustes transformation to the entire configuration 2
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Introduction to MDS Algorithms for MDS with Big Data A simulation study A real case: The EMNIST data set Conclusions References

Procrustes transformation

Apply the Procrustes transformation to the entire configuration 2

Multidimensional Scaling for large datasets 19/34 Cristian Pachón-Garćıa
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Procrustes transformation

A common configuration for two subsets, with connecting points
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Fast MDS (Yang, Liu, McMillan, and Wang 2006). It overcomes
the problem of MDS scalability using recursive programming in
combination with a data set splitting strategy.

Procrustes transformations are used at each recursive step to
connect the low dimensional configurations obtained for different
subsets.
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bigmds: An R package to do MDS with big data
• We published an R package in CRAN in 2021:
https://cran.r-project.org/web/packages/bigmds.

• 14000 downloads since then.
• The core of the package consists of six methods:

• landmark mds
• interpolation mds
• reduced mds
• pivot mds
• divide and conquer mds
• fast mds

• We also implemented a Procrustes function.

• Instead of using cmdscale function for classical MDS, we use
trlan.eigen function (from svd package) to perform the
spectral decomposition of matrices containing inner products:
8 seconds against 15 minutes for sample size n = 10000.
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Introduction to MDS Algorithms for MDS with Big Data A simulation study A real case: The EMNIST data set Conclusions References

A simulation study

Simulation design:

• Sample size: 5000, 10000, 20000, 100000, 250000, 500000,
750000, and 1000000.

• Data dimension: 10 or 100.

• Dominant dimensions: 2 or 10, the number of columns with a
variance much higher than the variance of the remaining noisy
dimensions.

A total of 32 scenarios, each replicated 100 times.

Multidimensional Scaling for large datasets 23/34 Cristian Pachón-Garćıa
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Correlation with the true main dimensions

Quantiles of order 2.5% (q0.025) and 97.5% (q0.975), and mean
values for the correlation coefficients between the original variables
and the ones recovered by the six MDS methods.

Algorithm q0.025 mean q0.975

LMDS 0.99869 0.99950 1
Interpolation MDS 0.99868 0.99949 1
RMDS 0.99868 0.99949 1
Pivot MDS 0.99621 0.99824 0.99988
Divide-and-conquer MDS 0.99774 0.99845 0.99915
Fast MDS 0.98278 0.99417 0.99886

Multidimensional Scaling for large datasets 24/34 Cristian Pachón-Garćıa
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Results on computing time
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divide_conquer_mds

fast_mds

Elapsed time (in seconds)
Algorithm q0.025 mean q0.975

LMDS 23.46 24.27 24.82
Interp MDS 18.21 18.34 18.48
RMDS 91.74 92.20 93.01
Pivot MDS 36.19 37.38 38.04
D-&-C MDS 44.57 45.06 45.74
Fast MDS 61.51 61.74 61.97

n = 106, p = 100, q = 10
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A real case: The EMNIST data set

• The EMNIST data set (Cohen, Afshar, Tapson, and van
Schaik 2017) is composed by handwritten character digits,
lowercase letters and capital letters.
• In total, there are 814,255 images divided into 62 classes:

• 10 digits (from ‘0’ to ‘9’; the 49.5% of the total).
• 26 lowercase letters (from ‘a’ to ‘z’; 23.5%).
• 26 capital letters (from ‘A’ to ‘Z’; 27%).

• Each image is of size 28× 28.
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Introduction to MDS Algorithms for MDS with Big Data A simulation study A real case: The EMNIST data set Conclusions References

1 Introduction to Multidimensional Scaling

2 Algorithms for MDS with Big Data

3 A simulation study

4 A real case: The EMNIST data set

5 Conclusions

Multidimensional Scaling for large datasets 29/34 Cristian Pachón-Garćıa
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Conclusions and additional comments

• The standard MDS algorithms are not able to deal with large
datasets: problems in memory and/or computing time.

• There are algorithms to overcome these difficulties.

• Two approaches: Gower’s interp., or Procrustes transf.

• We have presented six of these algorithms, as well as a
package in R: bigmds.
• In our simulation study:

• The six MDS algorithms provide low-dimensional
configurations similar to those eventually given by the classical
MDS algorithm.

• Interpolation MDS is the fastest method.
• LMDS and pivot MDS could present memory problems.
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Additional comments

• Further research:
• To combine these algorithms with other dimensionality

reduction methods.
• Non-classical metric scaling, Local MDS, ISOMAP, t-SNE,

UMAP, among other.

• Alternative dimensionality reduction tools in R:
• dimRed (Kraemer, Reichstein, and Mahecha 2018)

18 methods.
• Rdimtools (You and Shung 2022)

143 methods. Very fast (it uses a C++ linear algebra library).
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Thank You!

Landmark MDS Interpolation MDS Reduced MDS

Pivot MDS Divide-and-conquer MDS Fast MDS
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