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1. Sparse K-means



Motivating example

We wish to cluster the observations, and we suspect that the true

underlying clusters differ only with respect to some of the features.

Witten, D. M., Tibshirani, R. (2010). A framework for feature selection in clus-
tering. JASA, 105(490), 713-726. Implemented in sparcl R package.
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Feature additive dissimilarity

� X denotes an n × p data matrix, with n observations and p

features.

� d(x i , x i ′) denotes some measure of dissimilarity between

observations x i and x i ′ , which are rows i and i ′ of the data

matrix X .

� Assume that d is additive in the features. That is,

d(x i , x i ′) =

p∑
j=1

di ,i ′,j

where di ,i ′,j indicates the dissimilarity between observations i

and i ′ along feature j .

� The authors take d to be squared Euclidean distance,

di ,i ′,j = (Xij − Xi ′j)
2. However, other dissimilarity measures are

possible, such as the absolute difference, di ,i ′,j = |Xij − Xi ′j |. 4/27



K -means clustering criterion

K -means clustering minimizes the within-cluster sum of squares. It

seeks to partition the n observations into K clusters, such that:

K∑
k=1

1

nk

∑
i ,i ′∈Ck

p∑
j=1

di ,i ′,j

is minimal, where nk is the number of observations in cluster k and

Ck contains the indices of the observations in cluster k .

Note that if we define the between-cluster sum of squares as

p∑
j=1

(1
n

n∑
i=1

n∑
i ′=1

di ,i ′,j −
K∑

k=1

1

nk

∑
i ,i ′∈Ck

di ,i ′,j

)
the minimizing the within-cluster is equivalent to maximizing the

between-cluster.
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Sparse K -means clustering criterion

Sparse K -means clustering criterion is as follows:

max
c1,...,ck ,w

( p∑
j=1

wj

(1
n

n∑
i=1

n∑
i ′=1

di ,i ′,j −
K∑

k=1

1

nk

∑
i ,i ′∈Ck

di ,i ′,j
))

subject to

||w ||2 ≤ 1, ||w ||1 ≤ s, wj ≥ 0 ∀j

� The L1 penalty results in sparsity for small values of the

tuning parameter s.

� In general, without the L2 penalty at most one element of w

would be non-zero.
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Algorithm for sparse K -means clustering

- Initialize w as w1 = · · · = wp = 1√
p .

- Iterate until convergence:

a) Holding w fixed, optimize with respect C1, ...,CK :

min
C1,...,CK

( K∑
k=1

1

nk

∑
i,i ′∈Ck

p∑
j=1

wjdi,i ′,j
)

by applying the standard K -means algorithm to the n × n
dissimilarity matrix with (i , i ′) element

∑p
j=1 wjdi,i ′,j .

b) Holding C1, ...,CK fixed, optimize with respect w :

max
w

{
w

⊺
a

}
subject to ||w ||2 ≤ 1, ||w ||1 ≤ s, wj ≥ 0 ∀j , where
aj =

1
n

∑n
i=1

∑n
i ′=1 di,i ′,j −

∑K
k=1

1
nk

∑
i,i ′∈Ck

di,i ′,j , by applying

soft-thresholding method (Hastie et al. 2015).

- Clusters: C1, ...,CK , Feature weights: w1, ...,wp. 7/27



2. A kernelization of Sparse

K-means



Positive semidefinite kernel function

� A symmetric function k : X × X → R is positive semidefinite if

for all integers n ≥ 1 and elements {x i}ni=1 ⊂ X , the n × n

matrix with elements K ij = k(x i , x j) is positive semidefinite.

� When X ⊆ Rp,

� the linear kernel is defined by k(x , z) = ⟨x , z⟩,
� the polynomial kernel by k(x , z) = (⟨x , z⟩+ c)d , c ≥ 0,

� the Gaussian kernel by k(x , z) = exp
(
− 1

c ||x − z ||2
)
, c > 0.

� The input space X is just any set equipped with a real valued

symmetric and positive semidefinite kernel k.

� A kernel provides a measure of similarity between the points of

the input space.
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Feature space

� A kernel allows us identify each x ∈ X with a real function of x through
the feauture map ϕ, which dependes on the kernel k, defined as

ϕ : X → RX = {f : X → R}, x 7→ ϕ(x) = k(·, x)

� That map is 1-1. Identifying X with ϕ(X ), ϕ(X ) ⊂ RX .

� Vector space Fk = span(ϕ(X )).

� The elements f of Fk are real valued functions with domain X of the form
f (·) =

∑m
i=1 αik(·, x i ) for a convenient m ∈ N, x1, ..., xm ∈ X and

α1, ..., αm ∈ R.
� Kernel k allows to define a inner product ⟨·, ·⟩k in Fk .

� The inner product space Fk can be turn into a HS Hk (Reproducing
property):

⟨k(·, x), f ⟩k = f (x), ⟨ϕ(x), ϕ(x ′)⟩k = k(x , x ′)
9/27



Distance induced by the kernel

� The distance in the feature space, dHk
, induced by the kernel.

d2
Hk

(ϕ(x), ϕ(x ′)) = ⟨ϕ(x)− ϕ(x ′), ϕ(x)− ϕ(x ′)⟩k
= ⟨ϕ(x), ϕ(x)⟩k + ⟨ϕ(x ′), ϕ(x ′)⟩k − 2⟨ϕ(x), ϕ(x ′)⟩k
= k(x , x) + k(x ′, x ′)− 2k(x , x ′)

� The Kernel trick

Shawe-Taylor, J. and Cristianini, N. (2004). Kernel methods for pattern analysis.
Cambridge university press.
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Kernel k-means

The objective function is

min
C1,...,CK

( K∑
j=1

∑
ϕ(x i )∈Cj

||ϕ(x i )−mj ||2k
)

where mj is the center of the cluster Cj . That is mj =

∑
ϕ(x i )∈Cj

ϕ(x i )

|Cj | .

Further, ||ϕ(x i )−mj ||2k can be calculated from the elements of kernel

matrix K .

||ϕ(x i ) − mj ||
2
k = ⟨ϕ(x i ) − mj , ϕ(x i ) − mj ⟩k

= ⟨ϕ(x i ), ϕ(x i )⟩k − 2⟨ϕ(x i ),mj ⟩k + ⟨mj ,mj ⟩k

= ⟨ϕ(x i ), ϕ(xx i )⟩k − 2⟨ϕ(x i ),

∑
s∈Cj

ϕ(xs )

|Cj |
⟩k + ⟨

∑
s∈Cj

ϕ(xs )

|Cj |
,

∑
l∈Cj

ϕ(x l )

|Cj |
⟩k

= k(x i , x i ) − 2
1

|Cj |

∑
s∈Cj

k(x i , xs ) +
1

|Cj |2
∑
s∈Cj

∑
l∈Cj

k(x l , xs )

= k(x i , x i ) − 2F (x i , Cj ) + G(Cj )
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Kernel k-means algorithm

Input: Initial partition C1, ...,CK and m1, ...,mK

1. For each cluster Cj find G (Cj)

2. Compute F (x i ,Cj) for each x i and each cluster Cj

3. Find ||ϕ(x i )−mj ||2k and assign x i to the nearest center.

4. Update mj , j = 1, ...,K .

5. Repeat step 1 through step 4 until convergence.

Output: Final partition C1, ...,CK and m1, ...,mK

12/27



Multiple Kernel Learning

� MKL (Bach et al, 2004) combine M subkernels {km}Mm=1 where each
subkernel km uses only a distinct set of features in X .

� The kernel k is represented as the weighted sum of those subkernels

k(x , x ′) =
M∑

m=1

wmkm(xm, x
′
m)

where xm denotes the m-th set of features of x .

� The weight coeffcients of subkernels w1, ...,wm must be tuned to
optimize a certain problem-dependent objective function.

� Multiple Kernel K-means (Du, L et al. 2015).

� Feature-wise kernel (Yamada, M et al. 2014). The sets of features
have only a single feature, then each subkernel corresponds to each
feature

k(x , x ′) =

p∑
j=1

wjkj(xj , x
′
j )
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Feature-wise kernel additive distance

� With the single feature-wise kernel, the induced distance in the

feature space is additive in the features

d2
Hk

(x , x ′) = k(x , x) + k(x ′, x ′)− 2k(x , x ′)

=

p∑
j=1

wjkj(xj , xj) +

p∑
j=1

wjkj(x
′
j , x

′
j )− 2

p∑
j=1

wjkj(xj , x
′
j )

=

p∑
j=1

wj

(
kj(xj , xj) + kj(x

′
j , x

′
j )− 2kj(xj , x

′
j )
)

=

p∑
j=1

wjd
2
Hkj

(xj , x
′
j )

� Kernelization of the sparse k-means algorithm
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Algorithm for sparse kernel K -means clustering

- Initialize w as w1 = · · · = wp = 1√
p .

- Iterate until convergence:

a) Holding w fixed, optimize with respect C1, ...,CK :

min
C1,...,CK

( K∑
k=1

1

nk

∑
i,i ′∈Ck

p∑
j=1

wjd
2
Hkj

(xi,j , xi ′,j)
)

by applying the standard kernel K -means algorithm to the n × n
dissimilarity matrix with (i , i ′) element

∑p
j=1 wjd

2
Hkj

(xi,j , xi ′,j).

b) Holding C1, ...,CK fixed, optimize with respect w :

max
w

{
w

⊺
a

}
subject to ||w ||2 ≤ 1, ||w ||1 ≤ s, wj ≥ 0 ∀j , where
aj =

1
n

∑n
i=1

∑n
i ′=1 d

2
Hkj

(xi,j , xi ′,j)−
∑K

k=1
1
nk

∑
i,i ′∈Ck

d2
Hkj

(xi,j , xi ′,j),

by applying soft-thresholding.

- Clusters: C1, ...,CK , Feature weights: w1, ...,wp. 15/27



Doughnut data

X3, ...,X20 are U(−1, 1) i.i.d.

16/27



K-means and sparse K-means
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Kernel K-means and sparse Kernel K-means

(poly, c=0,d=2)
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3. When Autoencoders meet

Clustering



Denoising Autoencoders

Vincent, P. et al. Stacked denoising autoencoders: Learning useful representations
in a deep network with a local denoising criterion. JMLR, 2010.
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Stacked Autoencoders (SAE)

x
f
(1)
θ−−→ y

g
(1)

θ′−−→ x

y
f
(2)
θ−−→ z

g
(2)

θ′−−→ y

x
f
(1)
θ−−→ y

f
(2)
θ−−→ z

g
(2)

θ′−−→ y
g
(1)

θ′−−→ x
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Deep Embedding Clustering - Network structure

Xie, J., Girshick, R. and Farhadi, A. (2016, June). Unsupervised deep embedding
for clustering analysis. In International conference on machine learning (pp. 478-
487). PMLR. 21/27



Deep Embedding Clustering - Pipeline

DEC clusters data by simultaneously learning a set of k cluster centers

{µj ∈ Z}kj=1 in the feature space Z and the parameters θ of the

encoder part of the SAE, x
f
(2)
θ ◦f (1)θ−−−−−→ z , that maps data points into Z .

Two phases:

1. Parameter initialization (θ and {µj}kj=1).

1.1 Initialize DEC paremeters θ with SAE training.

1.2 Initialize {µj} by k-means clustering on embedded data in

feature space Z .

2. Parameter optimization (clustering). Iteration between two
steps

2.1 Computing the soft-assignment Q and the auxiliary target

distribution P,

2.2 Minimize with respect θ and {µj}kj=1 the KL divergence

between P and Q.
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Soft Assignment

Use the Student’s t-distribution as a kernel to measure the similarity

between embedded point z i and centroid µj

qij =
(1 + ||z i − µj ||2/α)−

α+1
2∑

j ′(1 + ||z i − µj ′ ||2/α)−
α+1
2

where z i (θ) = (f
(2)
θ ◦ f (1)θ )(x i ) ∈ Z corresponds to x i ∈ X after the

embedding, α are the degrees of freedom of t and qij can be seen as

the “probability” of assigning sample i to cluster j (soft-assignment).

van der Maten et al. Visualizing data using t-SNE. JMLR, 2008
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Kullback–Leibler divergence minimization

The model is trained by matching the soft-assignment qi to the target

distribution pi . The objective is defined as KL divergence loss

L = KL(P||Q) =
∑
i

∑
j

pij log
pij
qij

The target distribution P (pursued properties: 1) more emphasis on

data points assigned with high confidence, 2) normalize loss contribution of

each centroid to prevent large clusters)

pij =
q2ij/

∑
i qij∑

j ′
(
q2ij ′/

∑
i qij ′

)
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Optimization

Jointly optimize the cluster centers {µj} and encoder parameters θ

∂L

∂z i
=

α+ 1

α

∑
j

(1 +
||z i − µj ||2

α
)−1 · (pij − qij)(z i − µj)

∂L

∂µj

= −α+ 1

α

∑
i

(1 +
||z i − µj ||2

α
)−1 · (pij − qij)(z i − µj)

The gradients ∂L
∂z i

are passed down to the encoder and used in

standard backpropagation to compute the encoder’s parameters

gradient
∂L

∂θ
=

∂L

∂z i
· ∂z i
∂θ

25/27



DEC examples
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Conclusions

� We have found a way to incorporate feature sparsity into the

kernel K-means.

� The fusion of classical methods with new ones provides

competitive algorithms for cluster analysis.

Moltes Gràcies!!!
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