Statistical methodologies for goodness-of-fit: a comparative analysis of three established approaches

M. Francisco, K. Langohr,M. Besalú, G. Gómez Melis

 9^{th} GRBIO retreat

July 11^{th} , 2024

- **1** [Goodness-of-fit tests](#page-2-0)
- **2** [GofCens package](#page-11-0)
- ³ [Simulation study](#page-23-0)
- **4** [Preliminary results](#page-25-0)

Table of Contents

1 [Goodness-of-fit tests](#page-2-0)

- **2** [GofCens package](#page-11-0)
- ³ [Simulation study](#page-23-0)
- **4** [Preliminary results](#page-25-0)

Goodness-of-fit tests can be applied: available for both complete and censored data.

- Although non-parametric approaches are commonly used for this kind of data, parametric approaches also play an important role in survival analysis.
- Adaptations of classic goodness-of-fit tests to censored data are available.

Data

distribution

Statistical models and procedures

Tests based on the empirical distribution function

Test the hypothesis:

 H_0 : $F(t) = F_0(t)$ H_1 : $F(t) \neq F_0(t)$, for all $t \geq 0$

Most common ones:

- Kolmogorov-Smirnov
- Cramér-von Mises
- Anderson-Darling

When applying these tests to censored data, the empirical distribution function is replaced by an appropriate estimate of the distribution function.

Adaptation proposed by Fleming et al. given by:

$$
D_n = \sup_t |\hat{F}_n(t) - F_0(t)|
$$

Where:

- $\hat{\mathcal{F}}_n(t)$ is the estimation of the empirical distribution function of the data.
- \bullet *n* is the sample size.

For **right-censored data** $\hat{\mathsf{F}}_n$, is replaced by $\hat{\mathsf{F}}_n=1-\hat{\mathsf{S}}_n=1-\mathrm{e}^{-\hat{\Lambda}_n},$ where $\hat{\Lambda}_n$ denotes the Nelson-Aalen estimator of the cumulative hazard function.

Kolmogorov-Smirnov

As a result:

$$
\hat{D}_n = \sup_{0 \leq t \leq t_m} |\hat{F}_n(t) - F_0(t)| = \sup_{0 \leq t \leq t_m} \left| \int_0^t \frac{\hat{S}_n(t) S_0(s)}{\hat{S}_n(s)} d\left[\hat{\Lambda}_n(s) - \Lambda_0(s)\right] \right|,
$$

where S_0 and Λ_0 are, respectively, the survival and the cumulative hazard function of the hypothesized distribution and t_m is the largest observed time in the sample.

Cramér-von Mises

The Cramér-von Mises statistic is given by:

$$
M_n = n \int_{-\infty}^{+\infty} \left(\hat{F}_n(t) - F_0(t)\right)^2 dF_0(t),
$$

where \hat{F}_n is:

- The empirical distribution function when data is complete.
- \bullet 1 minus the Kaplan-Meier estimator of the survival function $(\hat{\digamma}_n = 1 \hat{S}_n)$ if the data has random right-censorship.

Cramér-von Mises

When data has right-censored observations:

$$
\hat{M}_n = n_r \sum_{j=1}^{n_r+1} \hat{F}_n(u_{(j-1)})(u_{(j)} - u_{(j-1)}) \left(\hat{F}_n(u_{(j-1)}) - (u_{(j)} + u_{(j-1)}) \right) + \frac{n_r}{3},
$$

where, Y_1,\ldots,Y_{n_r} are the n_r observed failure times and $u_{(i)}\ =\ F_0(Y_{(i)})$ if we transform the order statistic $\mathsf{Y}_{(1)},\ldots,\mathsf{Y}_{(n_r)}$ into $\mathsf{Uniform}(0,1)$ random variables $u_{(1)}, \ldots, u_{(n_r)}.$

The asymptotic distribution of \hat{M}_n is not easily implemented.

Anderson-Darling

Anderson-Darling statistics:

$$
A_n = n \int_{-\infty}^{+\infty} (\hat{F}_n(t) - F_0(t))^2 \frac{dF_0(t)}{F_0(t)(1 - F_0(t))}.
$$

where:

- $\hat{\mathsf{F}}_n$ is the empirical distribution function when data are complete.
- $\hat{\mathsf{F}}_n$ is 1 minus the Kaplan-Meier estimator of the survival function $(\hat{\mathcal{F}}_n = 1 - \hat{\mathcal{S}}_n)$ if the data has random right-censorship.

Anderson-Darling

When data has right-censored observations:

$$
\hat{A}_n = -n_r + n_r \sum_{j=1}^{n_r} (\hat{F}_n(u_{(j-1)}) - 1)^2 \left[\log |1 - u_{(j-1)}| - \log |1 - u_{(j)}| \right] + n_r \sum_{j=1}^{n_r - 1} \hat{F}_n^2(u_{(j)}) \left[\log |u_{(j+1)}| - \log |u_{(j)}| \right] - n_r \log |u_{(n)}|.
$$

The asymptotic distribution of $\hat{A_{n}}$ is not easily implemented.

1 [Goodness-of-fit tests](#page-2-0)

2 [GofCens package](#page-11-0)

³ [Simulation study](#page-23-0)

4 [Preliminary results](#page-25-0)

Goodness-of-Fit Methods for Complete and Right-Censored Data

install.packages ("Gofcens") library(GofCens)

Graphical tools and goodness-of-fit tests for complete and right-censored data.

Goodness-of-fit test:

- KScens
- CvMcens
- ADcens
- chisqcens

Graphical tools:

- kmPlot
- probPlot
- cumhazPlot

Example

• $H_0: X \sim$ Weibull

• Generates a plot that combines a **Kaplan-Meier survival curve** and a **parametric survival curve** in the same graph.

GofCens: probPlot

• Provides four types of probability plots: **P-P plot**, **Q-Q plot**, **Stabilised probability plot** and **Empirically Rescaled plot**.

• Cumulative hazard plot to check if a certain distribution is an appropriate choice for the data.


```
> KScens(colonsamp$time, colonsamp$status, distr = "weibull")
Distribution: weibull
KS Test results:
      A p-value F(ym) ym
  0.637 0.627 0.491 3238,000
Parameter estimates:
  shape scale
  0.762 4659.238
```


- For the tests Cramér-von Mises, Anderson-Darling and Chi-square, the asymptotic distributions of goodness-of-fit statistics are difficult to obtain/implement in the presence of censored data.
- The p-values associated with these tests are obtained via **bootstrap** methods.

Bootstrap methods for right-censored data

 H_0 : $F(t) = F_0(t; \theta)$

- **1** Observed data is utilized to estimate the parameter θ , denoted as $\hat{\theta}_p$, using maximum likelihood estimation
- 2 Generation of B independent bootstrap samples of the same size (n) as the original data set:
	- Generation of survival times T_1^b, \ldots, T_n^b from the fitted distribution $F_0(t; \hat{\theta}_n)$.
	- Generation of censoring times C_1^b, \ldots, C_n^b from the nonparametric estimation of H obtained with the Kaplan-Meier estimator.
	- Generation of observed survival times $Y_i^b = \min(T_i^b, C_i^b)$, and event indicators $\delta_i^b = \mathbf{1} \{ T_i^b \le C_i^b \}, i = 1, \dots n$

Bootstrap methods for right-censored data

- Maximum likelihood estimation of the parameter, $\hat{\theta}_n^b$, given $(Y_i^b, \delta_i^b), i = 1, \ldots n.$
- Computation of the test statistic, $(\hat{G}_n^{\hat{\theta}_n})_b$.
- ³ Repetition of this process for many bootstrap samples (default B=999)
- $\bm{\Phi}$ Sequence of bootstrap statistics, $(\hat{\bm{G}}_{{\bm{n}}}^{\hat{\theta}_{{\bm{n}}}})_{\bm{b}},~\bm{b}=1,\cdots,B$, represents the empirical distribution of the statistic under the null hypothesis
- \bm{s} $\bm{\rho}$ value is the proportion of bootstrap statistic values $(\hat{\bm{G}}^{\hat{\theta}_n}_{{\bm{n}}})_{\bm{b}}$ greater than or equal to the observed statistic $\hat{\mathsf{G}}_n$

What is the most correct test to apply? What does it depend on?

Motivation

Table of Contents

- **1** [Goodness-of-fit tests](#page-2-0)
- **2** [GofCens package](#page-11-0)
- ³ [Simulation study](#page-23-0)
- **4** [Preliminary results](#page-25-0)

Simulation study

Table of Contents

- **1** [Goodness-of-fit tests](#page-2-0)
- **2** [GofCens package](#page-11-0)
- ³ [Simulation study](#page-23-0)
- **4** [Preliminary results](#page-25-0)

Preliminary results

• Highly skewed Log-normal | Complete data

- Anderson-Darling and Cramér-von Mises have good power regardless of sample size.
- Kolmogorov-Smirnov has a good power for big sample size.
- Increase of sample size leads to increase of power.

Preliminary results

- Highly skewed Log-normal | 60 % censored data
- H_0 : $X \sim$ Weibull

• Power results are not adequate regardless of the test applied.

Preliminary results

- Highly skewed Log-normal \vert 60 % censored data
- $H_0: X \sim$ Logistic

- For large sample sizes, the tests produce good results.
- For a small sample size, Kolmogorov-Smirnov is the one that behaves better.
- K. Langohr, M. Besalú, M. Francisco, G. Gómez, GofCens: Goodness-of-Fit Methods for Complete and Right-Censored Data, R package version 0.98 (2024).
- URL https://CRAN.R-project.org/package=GofCens T. R. Fleming, J. R. O'Fallon, P. C. O'Brien, D. P. Harrington, Modified kolmogorov-smirnov test procedures with application to arbitrarily
- right-censored data, Biometrics (1980) 607–625. J. A. Koziol, S. B. Green, A cramér-von mises statistic for randomly censored data, Biometrika 63 (3) (1976) 465–474.
- A. N. Pettitt, M. A. Stephens, Modified cramér-von mises statistics for censored data, Biometrika 63 (2) (1976) 291–298

Thank you for the attention! Gracias por la atención! Gràcies per l'atenció!