Statistical methodologies for goodness-of-fit: a comparative analysis of three established approaches

M. Francisco, K. Langohr, M. Besalú, G. Gómez Melis

9th GRBIO retreat

July 11th, 2024

	Preliminary results 000000

Table of Contents

- Goodness-of-fit tests
- Ø GofCens package
- **3** Simulation study
- **4** Preliminary results

Goodness-of-fit tests ●00000000		Preliminary results

Table of Contents

Goodness-of-fit tests

- Ø GofCens package
- **3** Simulation study
- **4** Preliminary results

Goodness-of-fit tests can be applied: available for both complete and censored data.

- Although non-parametric approaches are commonly used for this kind of data, parametric approaches also play an important role in survival analysis.
- Adaptations of classic goodness-of-fit tests to censored data are available.

Tests based on the empirical distribution function

Test the hypothesis:

 ${\cal H}_0: {\cal F}(t) = {\cal F}_0(t)$ ${\cal H}_1: {\cal F}(t) \neq {\cal F}_0(t)$, for all $t \geq 0$

Most common ones:

- Kolmogorov-Smirnov
- Cramér-von Mises
- Anderson-Darling

When applying these tests to censored data, the empirical distribution function is replaced by an appropriate estimate of the distribution function.

Adaptation proposed by Fleming et al. given by:

$$D_n = \sup_t |\hat{F}_n(t) - F_0(t)|$$

Where:

- $\hat{F}_n(t)$ is the estimation of the empirical distribution function of the data.
- *n* is the sample size.

For **right-censored data** \hat{F}_n , is replaced by $\hat{F}_n = 1 - \hat{S}_n = 1 - e^{-\hat{\Lambda}_n}$, where $\hat{\Lambda}_n$ denotes the Nelson-Aalen estimator of the cumulative hazard function.

Kolmogorov-Smirnov

As a result:

$$\hat{D}_n = \sup_{0 \le t \le t_m} |\hat{F}_n(t) - F_0(t)| = \sup_{0 \le t \le t_m} \left| \int_0^t \frac{\hat{S}_n(t)S_0(s)}{\hat{S}_n(s)} d\left[\hat{\Lambda}_n(s) - \Lambda_0(s)\right] \right|,$$

where S_0 and Λ_0 are, respectively, the survival and the cumulative hazard function of the hypothesized distribution and t_m is the largest observed time in the sample.

Cramér-von Mises

The Cramér-von Mises statistic is given by:

$$M_n = n \int_{-\infty}^{+\infty} \left(\hat{F}_n(t) - F_0(t) \right)^2 dF_0(t),$$

where \hat{F}_n is:

- The empirical distribution function when data is complete.
- 1 minus the Kaplan-Meier estimator of the survival function $(\hat{F}_n = 1 \hat{S}_n)$ if the data has random right-censorship.

Goodness-of-fit tests 000000●00		

Cramér-von Mises

When data has right-censored observations:

$$\hat{M}_n = n_r \sum_{j=1}^{n_r+1} \hat{F}_n(u_{(j-1)})(u_{(j)} - u_{(j-1)}) \left(\hat{F}_n(u_{(j-1)}) - (u_{(j)} + u_{(j-1)})\right) + \frac{n_r}{3},$$

where, Y_1, \ldots, Y_{n_r} are the n_r observed failure times and $u_{(i)} = F_0(Y_{(i)})$ if we transform the order statistic $Y_{(1)}, \ldots, Y_{(n_r)}$ into Uniform(0, 1) random variables $u_{(1)}, \ldots, u_{(n_r)}$. The asymptotic distribution of \hat{M}_n is not easily implemented.

Goodness-of-fit tests 0000000●0		Preliminary results

Anderson-Darling

Anderson-Darling statistics:

$$A_n = n \int_{-\infty}^{+\infty} (\hat{F}_n(t) - F_0(t))^2 \frac{dF_0(t)}{F_0(t)(1 - F_0(t))}.$$

where:

- \hat{F}_n is the empirical distribution function when data are complete.
- \hat{F}_n is 1 minus the Kaplan-Meier estimator of the survival function $(\hat{F}_n = 1 \hat{S}_n)$ if the data has random right-censorship.

Anderson-Darling

When data has right-censored observations:

$$\hat{A_n} = -n_r + n_r \sum_{j=1}^{n_r} (\hat{F}_n(u_{(j-1)}) - 1)^2 \left[\log |1 - u_{(j-1)}| - \log |1 - u_{(j)}| \right] \\ + n_r \sum_{j=1}^{n_r - 1} \hat{F}_n^2(u_{(j)}) \left[\log |u_{(j+1)}| - \log |u_{(j)}| \right] - n_r \log |u_{(n)}|.$$

The asymptotic distribution of $\hat{A_n}$ is not easily implemented.

GofCens package ●0000000000	Preliminary results

Table of Contents

Goodness-of-fit tests

Ø GofCens package

3 Simulation study

4 Preliminary results

R Goodness-of-Fit Methods for Complete and Right-Censored Data

install.packages("Gofcens") library(GofCens)

Graphical tools and goodness-of-fit tests for complete and right-censored data.

Goodness-of-fit test:

- KScens
- CvMcens
- ADcens
- chisqcens

Graphical tools:

- kmPlot
- probPlot
- cumhazPlot

GofCens package	

Example

		id	time	status	
		293	2288	1	
		104	614	1	
<pre>> library(survival)</pre>		446	1106	1	
		863	751	1	
<pre>> colonsamp <- colon[sample(nrow(colon), 100),</pre>	1	124	2862	0	
<pre>> head(colonsamp)</pre>		42	3030	0	

• $H_0: X \sim Weibull$

• Generates a plot that combines a **Kaplan-Meier survival curve** and a **parametric survival curve** in the same graph.

Matilde Francisco (UPC)

GofCens: probPlot

• Provides four types of probability plots: P-P plot, Q-Q plot, Stabilised probability plot and Empirically Rescaled plot.

GofCens: cumhazPlot

• Cumulative hazard plot to check if a certain distribution is an appropriate choice for the data.

Goodness-of-fit tests 00000000	GofCens package 000000●00000	Simulation study 00	Preliminary results
GofCens			
Null Distribution Test statistic p-value			

Maximum likelihood estimates of the parameters of the distribution under study

Goodness-of-fit tests 000000000	GofCens package 000000000000	Simulation study 00	Preliminary results 000000
GofCens			
<pre>> ADcens(colonsamp\$time, Distribution: weibull</pre>	colonsamp\$status, distr =	= "weibull")	
AD Test results: AD p-value 10.343 0.454			
Parameter estimates: shape scale 0.762 4659.238			
<pre>> CvMcens(colonsamp\$time, Distribution: weibull</pre>	colonsamp\$status, distr =	"weibull")	
CvM Test results: CvM p-value 2.349 0.206			
Parameter estimates: shape scale 0.762 4659.238			

Goodness-of-fit tests 000000000	GofCens package 00000000●000	Simulation study 00	Preliminary results 000000
GofCens			
> gofcens(colonsamp\$time, Distribution: weibull	colonsamp\$status, di:	str = "weibull")	
Test statistics KS CvM AD 0.637 2.349 10.343			
p-values KS CvM AD 0.627 0.174 0.457			
Parameter estimates: shape scale 0.762 4659.238			
• For the tests Cram	ér-von Mises And	erson-Darling and Chi-s	square the

- For the tests Cramer-von Mises, Anderson-Darling and Chi-square, the asymptotic distributions of goodness-of-fit statistics are difficult to obtain/implement in the presence of censored data.
- The p-values associated with these tests are obtained via **bootstrap** methods.

Bootstrap methods for right-censored data

 $H_0: F(t) = F_0(t;\theta)$

- **1** Observed data is utilized to estimate the parameter θ , denoted as $\hat{\theta}_n$, using maximum likelihood estimation
- Q Generation of B independent bootstrap samples of the same size (n) as the original data set:
 - Generation of survival times T_1^b, \ldots, T_n^b from the fitted distribution $F_0(t; \hat{\theta}_n)$.
 - Generation of censoring times C₁^b,..., C_n^b from the nonparametric estimation of H obtained with the Kaplan-Meier estimator.
 - Generation of observed survival times $Y_i^b = \min(T_i^b, C_i^b)$, and event indicators $\delta_i^b = \mathbf{1}\{T_i^b \leq C_i^b\}, i = 1, \dots n$

Bootstrap methods for right-censored data

- Maximum likelihood estimation of the parameter, $\hat{\theta}_n^b$, given $(Y_i^b, \delta_i^b), i = 1, \dots n$.
- Computation of the test statistic, $(\hat{G}_n^{\hat{\theta}_n})_b$.
- **3** Repetition of this process for many bootstrap samples (default B=999)
- **4** Sequence of bootstrap statistics, $(\hat{G}_n^{\hat{\theta}_n})_b$, $b = 1, \dots, B$, represents the empirical distribution of the statistic under the null hypothesis
- **5** *p* value is the proportion of bootstrap statistic values $(\hat{G}_n^{\hat{\theta}_n})_b$ greater than or equal to the observed statistic \hat{G}_n

	GofCens package ○○○○○○○○○○	
Motivation		

What is the most correct test to apply? What does it depend on?

	Simulation study ●0	Preliminary results
T 11 C C		

Table of Contents

- Goodness-of-fit tests
- Ø GofCens package
- **3** Simulation study
- **4** Preliminary results

	Simulation study ○●	Preliminary results

Simulation study

	Preliminary results ●00000

Table of Contents

- Goodness-of-fit tests
- Ø GofCens package
- **3** Simulation study
- **4** Preliminary results

	Preliminary results 0●0000

Preliminary results

Highly skewed Log-normal | Complete data

- Anderson-Darling and Cramér-von Mises have good power regardless of sample size.
- Kolmogorov-Smirnov has a good power for big sample size.
- Increase of sample size leads to increase of power.

	Preliminary results 00●000

Preliminary results

- Highly skewed Log-normal | 60 % censored data
- $H_0: X \sim Weibull$

 Power results are not adequate regardless of the test applied.

	Preliminary results 000●00

Preliminary results

- Highly skewed Log-normal | 60 % censored data
- *H*₀ : *X* ~ *Logistic*

- For large sample sizes, the tests produce good results.
- For a small sample size, Kolmogorov-Smirnov is the one that behaves better.

- K. Langohr, M. Besalú, M. Francisco, G. Gómez, GofCens: Goodness-of-Fit Methods for Complete and Right-Censored Data, R package version 0.98 (2024).
- URL https://CRAN.R-project.org/package=GofCens T. R. Fleming, J. R. O'Fallon, P. C. O'Brien, D. P. Harrington, Modified kolmogorov-smirnov test procedures with application to arbitrarily
- right-censored data, Biometrics (1980) 607–625. J. A. Koziol, S. B. Green, A cramér-von mises statistic for randomly censored data, Biometrika 63 (3) (1976) 465–474.
- A. N. Pettitt, M. A. Stephens, Modified cramér-von mises statistics for censored data, Biometrika 63 (2) (1976) 291–298

Thank you for the attention! Gracias por la atención! Gràcies per l'atenció!