Statistical Methods for Innovative Platform Trial Designs Incorporating Non-concurrent Controls

Pavla Krotka

Supervisors: Marta Bofill Roig, Martin Posch

GRBIO Retreat 2024

Multi-arm multi-stage trials that allow new experimental treatment arms to enter and leave the trial at different times. 1

- Treatments to be studied not defined upfront
- Control arm can be shared

¹Woodcock, J., LaVange, L. M. (2017). Master Protocols to Study Multiple Therapies, Multiple Diseases, or Both. New England Journal of Medicine.

Multi-arm multi-stage trials that allow new experimental treatment arms to enter and leave the trial at different times. 1

- Treatments to be studied not defined upfront
- Control arm can be shared

¹Woodcock, J., LaVange, L. M. (2017). Master Protocols to Study Multiple Therapies, Multiple Diseases, or Both. New England Journal of Medicine.

Multi-arm multi-stage trials that allow new experimental treatment arms to enter and leave the trial at different times 1

- Treatments to be studied not defined upfront
- Control arm can be shared

¹Woodcock, J., LaVange, L. M. (2017). Master Protocols to Study Multiple Therapies, Multiple Diseases, or Both. New England Journal of Medicine.

Pavla Krotka pavla.krotka@upc.edu 2

Multi-arm multi-stage trials that allow new experimental treatment arms to enter and leave the trial at different times 1

- Treatments to be studied not defined upfront
- Control arm can be shared

¹Woodcock, J., LaVange, L. M. (2017). Master Protocols to Study Multiple Therapies, Multiple Diseases, or Both. New England Journal of Medicine.

Pavla Krotka pavla.krotka@upc.edu 2

Benefits:

- Treatments are evaluated faster as compared to separate trials since drugs are tested in parallel
- **Trials are more efficient** due to the joint trial infrastructure
- Less patients are required in the control group as it is shared across all treatment arms
- Experimental treatments can enter the trial as they become available, which provides more flexibility than multi-arm trials

Benefits:

- Treatments are evaluated faster as compared to separate trials since drugs are tested in parallel
- **•** Trials are more efficient due to the joint trial infrastructure
- Less patients are required in the control group as it is shared across all treatment arms
- Experimental treatments can enter the trial as they become available, which provides more flexibility than multi-arm trials

Challenges:

- Multiple operational and statistical challenges due to higher complexity
- Adaptations to the trial (e.g. entering and leaving times or the total number of experimental treatments) are unknown in advance
- Use of the **shared control arm** in trial analysis

- Concurrent controls (CC): patients recruited to the control when the experimental treatment is part of the platform
- Non-concurrent controls (NCC): patients recruited before the experimental treatment entered the platform

Concurrent and non-concurrent controls

- Concurrent controls (CC): patients recruited to the control when the experimental treatment is part of the platform
- Non-concurrent controls (NCC): patients recruited before the experimental treatment entered the platform

[Statistical Methods for Innovative Platform Trials Incorporating NCC](#page-0-0) GRBIO Retreat 2024

- Concurrent controls (CC): patients recruited to the control when the experimental treatment is part of the platform
- Non-concurrent controls (NCC): patients recruited before the experimental treatment entered the platform

- Concurrent controls (CC): patients recruited to the control when the experimental treatment is part of the platform
- Non-concurrent controls (NCC): patients recruited before the experimental treatment entered the platform

.
ISTAT POLITÊCNICA **CATALUNYA**

- Concurrent controls (CC): patients recruited to the control when the experimental treatment is part of the platform
- Non-concurrent controls (NCC): patients recruited before the experimental treatment entered the platform

²Dodd, L. E., et al. (2021). Platform Trials — Beware the Noncomparable Control Group. New England Journal of Medicine.

Simple analysis methods

• Separate approach: analysis using only concurrent controls

Simple analysis methods

- Separate approach: analysis using only concurrent controls
- Pooled approach: pooling concurrent and non-concurrent controls

Simple analysis methods

- Separate approach: analysis using only concurrent controls
- Pooled approach: pooling concurrent and non-concurrent controls

Modelling approaches with time trend adjustment

- Frequentist regression models: adjust for time trends by including the factor **period as a fixed effect** (Lee & Wason, 2020; Bofill Roig, Krotka, et al., 2022).
- Bayesian Time Machine: adjusts for time by smoothing over calendar time intervals with a Bayesian normal dynamic linear model (Saville, et al., 2022)

Simple analysis methods

- Separate approach: analysis using only concurrent controls
- **Pooled approach:** pooling concurrent and non-concurrent controls

Modelling approaches with time trend adjustment

- Frequentist regression models: adjust for time trends by including the factor **period as a fixed effect** (Lee & Wason, 2020; Bofill Roig, Krotka, et al., 2022).
- Bayesian Time Machine: adjusts for time by smoothing over calendar time intervals with a Bayesian normal dynamic linear model (Saville, et al., 2022)

NCC R-package

- Software implementation of methods for incorporating NCC (Krotka, et al., 2023)
- Accompanying website: <https://pavlakrotka.github.io/NCC/>

Goals of the PhD thesis

- 1. Methodology for incorporating non-concurrent controls in trials with continuous endpoints and interim analyses
- 2. Extension of the methodology for including non-concurrent controls to trials with time-to-event endpoints
- 3. Methods for adaptive group-sequential trial designs utilizing pseudo-values regression
- 4. Software implementation in the NCC R-package

Objective 1 Incorporating non-concurrent controls in trials with interim analyses

Frequentist regression model Without interim analysis in arm 1

Model-based approach³ based on data from all treatment arms and control:

where y_j is the outcome, $k=0,1,2$ denotes the treatment and $\boldsymbol{s}=1,2$ the period.

³Bofill Roig, M., Krotka, P., et al. (2022). "On model-based time trend adjustments in platform trials with non-concurrent controls." BMC Medical research methodology.

Estimation of treatment effect in arm 2 using regression methods Without interim analysis in arm 1

Treatment effect estimator using the model-based approach:

$$
\tilde{\theta}_2=\bar{y}_{2,2}-\tilde{y}_{0,2}
$$

Model-based estimate of the control response in period 2:

$$
\tilde{y}_{0,2} = (1 - \varrho) \cdot \bar{y}_{0,2} + \varrho \cdot [\bar{y}_{0,1} + \underbrace{(\bar{y}_{1,2} - \bar{y}_{1,1})}_{\text{Time trend estimate}}]
$$

Model-based approach leads to an unbiased treatment effect estimator $\tilde{\theta}_2$ if the time trends in all arms are equal and additive on the model scale.

VERSITAT POLITÈCNICA

[Statistical Methods for Innovative Platform Trials Incorporating NCC](#page-0-0) GRBIO Retreat 2024

Pavla Krotka pavla.krotka@upc.edu 9

Platform trials with group sequential interim analyses Interim analysis in arm 1 at the entry time of arm 2

Hypothesis testing problem:

Arm 1: H_0 : $\theta_1 = 0$ H_1 : $\theta_1 > 0$

Interim analysis of arm 1:

Linear regression model without time adjustment:

$$
E(y_j) = \underbrace{\eta_0}_{\text{Control response}} + \underbrace{\theta_1 \cdot I(k_j = 1)}_{\text{Treatment effect}}
$$

• Stop arm 1 for futility if the one-sided p-value $p > \alpha_1$

Platform trials with group sequential interim analyses Interim analysis in arm 1 at the entry time of arm 2

Hypothesis testing problem:

Arm 1: H_0 : $\theta_1 = 0$ H_1 : $\theta_1 > 0$ Arm 2: H_0 : $\theta_2 = 0$ H_1 : $\theta_2 > 0$

Interim analysis of arm 1:

Linear regression model without time adjustment:

$$
E(y_j) = \underbrace{\eta_0}_{\text{Control response}} + \underbrace{\theta_1 \cdot I(k_j = 1)}_{\text{Treatment effect}}
$$

• Stop arm 1 for futility if the one-sided p-value $p > \alpha_1$

Analysis of arm 2:

Model-based approach including non-concurrent controls and adjusting for periods:

$$
E(y_j) = \underbrace{\eta_0}_{\text{Control response}} + \underbrace{\sum_{k=1,2} \theta_k \cdot I(k_j = k)}_{\text{Treatment effects}} + \underbrace{\tau \cdot I(s_j = 2)}_{\text{Period time effect}}
$$

Pavla Krotka pavla.krotka@upc.edu 10

Estimation of treatment effect in arm 2 Interim analysis in arm 1 at the entry time of arm 2

Treatment effect estimator for arm 2: $\tilde{\theta}_2 = \bar{y}_{2,2} - \tilde{y}_{0,2}$

Estimate of the control response in period 2:

If arm 1 continues at interim:

$$
\tilde{y}_{0,2} = (1 - \varrho) \cdot \bar{y}_{0,2} + \varrho \cdot [\bar{y}_{0,1} + \underbrace{\bar{y}_{1,2} - \bar{y}_{1,1}}_{\text{Time trend}}]
$$
\n
$$
\overline{y}_{\text{estimate}}^{\text{Time trend}}
$$

Estimation of treatment effect in arm 2 Interim analysis in arm 1 at the entry time of arm 2

Treatment effect estimator for arm 2: $\tilde{\theta}_2 = \bar{y}_{2,2} - \tilde{y}_{0,2}$

Estimate of the control response in period 2:

If arm 1 continues at interim:

If arm 1 stops at interim:

$$
\tilde{y}_{0,2} = (1-\varrho)\cdot \bar{y}_{0,2} + \varrho\cdot [\bar{y}_{0,1} + \underbrace{\bar{y}_{1,2} - \bar{y}_{1,1} }_{\text{Time trend}}]
$$

If arm 1 stops at interim, the model-based approach does not use non-concurrent controls.

BRITAT BOLITÉCHICA UNIVERSITAT P
DE CATALUNYA

 $\tilde{y}_{0,2} = \bar{y}_{0,2}$

[Statistical Methods for Innovative Platform Trials Incorporating NCC](#page-0-0) GRBIO Retreat 2024

Pavla Krotka pavla.krotka@upc.edu 11

What is the impact of the futility bound α_1 on the type I error of arm 2?

Simulation setting

- $\theta_1 = \theta_2 = 0$
- Sample sizes of 250 for arm 1 and control; and 150 for arm 2
- Varying futility bound α_1

What is the impact of the futility bound α_1 on the type I error of arm 2?

Simulation setting

- $\theta_1 = \theta_2 = 0$
- Sample sizes of 250 for arm 1 and control; and 150 for arm 2
- Varying futility bound α_1

Type I error rate control of treatment arm 2 is lost if treatment arm 1 can be dropped at the interim analysis.

What is the impact of the effect θ_1 on the type I error of arm 2?

Simulation setting

- $\theta_2 = 0$
- Sample sizes of 250 for arm 1 and control; and 150 for arm 2
- Stopping for futility using futility boundary $\alpha_1 = 0.5$
- Stopping for efficacy using O'Brien-Fleming boundaries
- Varying the treatment effect θ_1 of treatment arm 1

What is the impact of the effect θ_1 on the type I error of arm 2?

Simulation setting

- $\theta_2 = 0$
- Sample sizes of 250 for arm 1 and control; and 150 for arm 2
- Stopping for futility using futility boundary $\alpha_1 = 0.5$
- Stopping for efficacy using O'Brien-Fleming boundaries
- Varying the treatment effect θ_1 of treatment arm 1

The type I error rate of treatment arm 2 is inflated for treatment effects of arm 1 around 0 and deflated in case of θ_1 around 0.4.

Summary

Key message

Including interim analyses to platform trials with non-concurrent controls leads to a loss of type I error rate control when using the regression model.

Next steps

- Evaluate the maximum type I error rate inflation in platform trial designs with interim analyses
- Propose adjusted estimators allowing for inclusion of NCC data, which either eliminate bias or reduce the bias
- Derive the **variance** of such estimators for conducting statistical tests

Selected references

- Bofill Roig, M., Krotka, P., Burman, C. F., Glimm, E., Gold, S. M., Hees, K., Jacko P., Koenig F., Magirr D., Mesenbrink P., Viele K., Posch, M., "On model-based time trend adjustments in platform trials with non-concurrent controls." BMC Medical research methodology 22.1 (2022): 1-16
- Krotka, P., Hees, K., Jacko, P., Magirr, D., Posch, M., Bofill Roig, M., "NCC: An R-package for analysis and simulation of platform trials with non-concurrent controls." SoftwareX 23 (2023): 101437.
- Krotka, P., Posch, M., Gewily, M., Höglinger, G., Bofill Roig, M., "Statistical modeling to adjust for time trends in adaptive platform trials utilizing non-concurrent controls." arXiv preprint arXiv:2403.14348 (2024).
- Lee, K. M., and Wason, J. "Including non-concurrent control patients in the analysis of platform trials: is it worth it?." BMC Medical research methodology 20.1 (2020): 1-12.
- Saville, B. R., Berry, D. A., Berry, N. S., Viele, K., Berry, S. M., et al. "The Bayesian Time Machine: Accounting for Temporal Drift in Multi-arm Platform Trials." Clinical Trials 19.5 (2022): 490-501
- Woodcock, J., and LaVange, L. M. Master Protocols to Study Multiple Therapies, Multiple Diseases, or Both. New England Journal of Medicine 377.1 (2017): 62–70

Thank you for your attention!

