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Overview

1. Interval-censored covariates

∠ What’s interval censoring?

∠ Construction of the likelihood function

2. Parameter estimation

Gómez G, Espinal A and Lagakos SW (2003) Inference for a linear regression model with an

interval-censored covariate. Stat in Med, 22(3), 409–425

∠ Alternative approach that doesn’t rely on discretization

∠ In the context of GLMs

3. Goodness-of-fit

∠ Typical residuals for GLMs are not well-defined

∠ Extending definitions / exploring new residuals (work in progress)

4. Chromatography illustration
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Interval censoring: Survival illustration

The time-to-event variable Z is interval-censored in ⌊ZL, ZR⌋ if the exact value

of Z is not observed, but it is known to lie within the time interval ⌊ZL, ZR⌋.
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Interval censoring: Survival illustration

The time-to-event variable Z is interval-censored in ⌊ZL, ZR⌋ if the exact value

of Z is not observed, but it is known to lie within the time interval ⌊ZL, ZR⌋.

○␣ Response variable: Time to breast retraction in early breast cancer patients

- Radiotherapy and adjuvant chemotherapy v.s. Radiotherapy alone

- Main goal: Effect of treatment in cosmetic appearance

- Cosmetic deterioration = manifestation of breast retraction

- Scheduled visits every 4 to 6 months

Beadle et al. (1984) Cosmetic results following primary radiation therapy for early breast cancer. Cancer, 54(12),

2911–2918 2/18



Interval censoring: Chromatography illustration

The measurement variable Z is interval-censored in ⌊ZL, ZR⌋ if the exact value

of Z is not observed, but it is known to lie within the interval ⌊ZL, ZR⌋.

○␣ Explanatory variable: Total plasma carotenoid concentration (Z)

- Carotenoids are a family of antioxidant compounds that we obtain from

fruits and vegetables.

- Main goal: Predictive value of blood carotenoid concentration in

cardiometabolic health.

- Carotenoid components are measured in a laboratory using techniques with

specific limits of detection and quantification.

3/18



Interval censoring: Chromatography illustration

The measurement variable Z is interval-censored in ⌊ZL, ZR⌋ if the exact value

of Z is not observed, but it is known to lie within the interval ⌊ZL, ZR⌋.

○␣ Explanatory variable: Total plasma carotenoid concentration (Z)

- Carotenoids are a family of antioxidant compounds that we obtain from

fruits and vegetables.

- Main goal: Predictive value of blood carotenoid concentration in

cardiometabolic health.

- Carotenoid components are measured in a laboratory using techniques with

specific limits of detection and quantification.

Compound 1
0 LoD1 LoQ1

Compound
2 LoQ2LoD

2
0

Compound
0 LoD3 LoQ3

3
x

Z ∈
[
LoD2 + C3, LoD1 + LoQ2 + C3

]
3/18



Interval censoring: Chromatography illustration

The measurement variable Z is interval-censored in ⌊ZL, ZR⌋ if the exact value

of Z is not observed, but it is known to lie within the interval ⌊ZL, ZR⌋.

○␣ Explanatory variable: Total plasma carotenoid concentration (Z)

- Carotenoids are a family of antioxidant compounds that we obtain from

fruits and vegetables.

- Main goal: Predictive value of blood carotenoid concentration in

cardiometabolic health.

- Carotenoid components are measured in a laboratory using techniques with

specific limits of detection and quantification.

Marhuenda-Muñoz M et al. (2022) Circulating

carotenoids are associated with favorable lipid and fatty

acid profiles in an older population at high cardiovascular

risk. Front Nutr, 9, 967967

INSA-UB: Research Institute of Nutrition and Food

Safety at the University of Barcelona

Predimed-Plus: Spanish multicenter randomized trial of

primary cardiovascular prevention

Gómez Melis G, Marhuenda-Muñoz M and Langohr K (2022) Regression Analysis with Interval-Censored

Covariates. Application to Liquid Chromatography. In: Sun J and Chen DG (eds) Emerging Topics in Modeling

Interval-Censored Survival Data (pp. 271–294)
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Generalized linear model

µ = E(Y |X, Z) = g−1(α+ β′X + γZ)

where

∠ g(·) monotonic differentiable link function

∠ X = (X1, . . . , Xp)′ covariates

∠ Z with distribution function W (·) and Z ∈ [ZL, ZR]

∠ Y discrete or continuous, belonging to ψ-exponential family of distributions

f(y | ψ = ψ(µ), ϕ) = h(y, ϕ) exp[{yψ − a(ψ)}/ϕ]

∠ First two moments of Y : µ = ȧ(ψ) and Var(Y | X, Z) = ϕ ä(ψ)

Goal: Estimate θ = (α,β′, γ, ϕ)
′
where ϕ represents the dispersion of the model.
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Likelihood functions: full and simplified

Lfull =
n∏

i=1

P
(
Y ∈ dyi,X ∈ dxi, Zi ∈ [zli , zri ], ZL ∈ dzli , ZR ∈ dzri

)

Lsimp(θ, W (·)) =
n∏

i=1

P
(
Y ∈ dyi,X ∈ dxi, Zi ∈ [zli , zri ])

=

n∏
i=1

∫ zri

zli

fY |X,Z(yi | xi, s; θ) dW (s | xi)P (X ∈ dxi) ds

∝
n∏

i=1

∫ zri

zli

fY |X,Z(yi | xi, s; θ) dW (s)

Assumptions for Lsimp ∝ Lfull:

∠ Non-informative censoring [1]

dW (z | ZL = zl, ZR = zr) =
dW (z)

P (zl ≤ Z ≤ zr)

∠ Y and (ZL, ZR) conditional independent given Z

[1]Oller R, Gómez Melis G and Calle ML (2004) Interval censoring: model characterizations for the validity of the

simplified likelihood. Can J Stat, 32(3), 315–326
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Observations yi provide crucial information about Ŵ

○ Empirical (unobserved) ○ Turnbull’s ○ Suitable approach

Fig.1: NPMLE of W using only {zli , zri}
n
i=1

i.e. Turnbull’s estimator

Fig.2: NPMLE of W using {zli , zri , yi}n
i=1

i.e. the Ŵ that maximizes

L(θ, W (·)) =
n∏

i=1

∫ zri

zli

f(yi | xi, s; θ) dW (s)
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Parameter estimation: an EM-type algorithm
Maximization of

l(θ, W (·)) =
n∑

i=1

log

{∫ zri

zli

f(yi | xi, s; θ) dW (s)

}

over θ ∈ Rp+2 ×R+ and W : Ω ⊆ R→ [0, 1] distribution function.

∠ Set up initial conditions and iterate between the maximization of l with respect

to W and θ.

∠ Differentiating the functional l(W | θ) and equating to zero yields the

self-consistent equations in A).

∠ The EM-type algorithm is defined by

A) Ŵ (z0) =
1

n

n∑
i=1

∫ zri

zli

f(yi | xi, s; θ̂) dW (s ∧ z0)∫ zri

zli

f(yi | xi, s; θ̂) dW (s)

B) θ̂ = argmax
θ

n∑
i=1

log

{∫ zri

zli

f(yi | xi, s; θ) dŴ (s)

}
where s ∧ z0 = min{s, z0}.
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Parameter estimation: construction of partition intervals

l(θ, W (·)) =
n∑

i=1

log

{∫ zri

zli

f(yi | xi, s; θ) dW (s)

}
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Parameter estimation: construction of partition intervals

l(θ, W (·)) =
n∑

i=1

log

{∫ zri

zli

f(yi | xi, s; θ) dW (s)

}

{Ij}mn
j=1 is a partition of the support Ω = [0, zr5 ] such that

l(θ, W (·)) =
n∑

i=1

log

{ mn∑
j=1

κij

∫
Ij

f(yi | xi, s; θ) dW (s)

}

where κij = 1{Ij ⊆ ⌊zli , zri⌋}.
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Parameter estimation: redefinition of the maximization problem

∠ Assume W is uniform in Ij for all j = 1, . . . ,mn.

∠ Then the maximization problem rewrites to

l(θ, w) =
n∑

i=1

log

{ mn∑
j=1

κij
ŵj

|Ij |

∫
Ij

f(yi | xi, s; θ)ds

}
where |Ij | denotes the length of Ij ,

over θ ∈ Rp+2 ×R+ and w s.t.
∑mn wj = 1 and wj ≥ 0.

∠ And the EM-type algorithm (j = 1, . . . ,mn):

A) w
(l+1)
j =

1

n

n∑
i=1

κij

w
(l)
j

|Ij |

∫
Ij

f(yi | s; θ̂)ds

mn∑
k=1

κik
w

(l)
k

|Ik|

∫
Ik

f(yi | s; θ̂)ds

B) θ̂ = argmax l(θ | ŵ)

Solved by Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm,

a quasi-Newton method for the numerical search of local maxima.
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Diagnostics for GLM assumptions: Pearson and deviance residuals
∠ Pearson residuals are defined as r

(P )
i = (yi − µ̂i)/

√
V (µ̂i), where V (·) is the

variance function in Var(Yi) = ϕV (µi). Asymptotic normality of r
(P )
i follows from

the Central Limit Theorem (CLT) applied to Yi.

Asymptotics for Pearson residuals in case of Yi ∼ Gamma with shape ν and

scale λi = µi/ν.

Yi =
ν∑

k=1

Uk with Uk ∼i.i.d. Exp(1/λi)

By the CLT, the Pearson residual
√
ν yi−µ̂i√

µ̂2
i

→d N(0, 1) as ν → ∞.

For the ith Pearson residual to be asymp. normal, the data dispersion ϕ = 1/ν

should be low.

∠ Deviance residuals are defined as r
(D)
i = sgn(yi − µ̂i)

√
d(yi, µ̂i), where

d(yi, µ̂i) = 2
{
yi
(
ψ(yi)− ψ(µ̂i)

)
− b(ψ(yi)) + b(ψ(µ̂i))

}
is the unit deviance.

Asymptotic normality derives from the saddle-point approximation of Yi’s distribution

to the normal.

∠ Discard Pearson and deviance residuals because their asymptotics are

approximations that, in most cases, do not hold.[2]

[2]Smyth GK and Dunn PK (2018) Generalized Linear Models With Examples in R. Section 8.6.
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Diagnostics for GLM assumptions: Quantile residuals
In the context of a GLM defined by E[Y | Xi, Zi] = µi = g−1(α+ β′Xi + γZi),

with predicted mean µ̂i = g−1(α̂+ β̂′xi + γ̂zi),

Quantile residuals are defined by

ri = Φ−1(F (yi; µ̂i, ϕ̂)),

where Φ is the cdf of the standard Normal distribution.

∠ Consider a gamma GLM with ϕ = 1 fitted to data

∠ Observation with y = 1.2 and µ̂ = 3

Smyth GK and Dunn PK (2018) Generalized Linear Models With Examples in R. Section 8.3.4
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Diagnostics for the distributional assumption

∠ Denote by F ∗ the true distribution of Yi. Then Ui = F ∗(yi) ∼ U(0, 1).

∠ Quantile residuals are normally distributed if F (·; µ̂i, ϕ̂) is good enough for each i.

∠ F (yi; µ̂i, ϕ̂) = F (yi | X = xi, Z = zi; α̂, β̂, γ̂, ϕ̂), so we define

ri = Φ−1(F (yi | xi, Zi ∈ ⌊zli , zri⌋; α̂, β̂, γ̂, ϕ̂))

= Φ−1(EZi
[F (yi; µ̂i, ϕ̂) | zli , zri ])

∠ It is defined under the true distribution of Zi. We choose to estimate ri assuming

that Zi is uniformly distributed within ⌊zli , zri⌋.

3 Simulation analysis to assess the power of these residuals in validating the

distribution assumption.
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Next steps

∠ Possible improvements of the estimation algorithm

✓ Alternatives to the assumption of W being uniform in Ij

✓ Elaborate a B step analogous to IRLS to improve computational efficiency

✓ Kuhn–Tucker conditions to check that Ŵ is a global maximum

∠ Check consistency of the estimator θ̂

∠ Derive standard error and confidence intervals for θ̂

∠ Adapt diagnostic tools for GLM assumptions

✓ Quantile residuals to check the distributional assumption

✓ Working residuals[3] to check the linearity of covariates and link function

assumptions

✓ Outliers / influential observations (Cook’s distance[3])

� If everything goes as planned, we’ll be publishing by the end of September!

[3]McCullagh P and Nelder JA (1989) Generalized linear models, 2nd ed. Sections 2.5.1 and 12.6
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Chromatography illustration
Marhuenda-Muñoz M et al. (2022) Circulating

carotenoids are associated with favorable lipid and fatty

acid profiles in an older population at high cardiovascular

risk. Front Nutr, 9, 967967

INSA-UB: Research Institute of Nutrition and Food

Safety at the University of Barcelona

Predimed-Plus: Spanish multicenter randomized trial of

primary cardiovascular prevention

Total plasma carotenoid concentration (Z)

∠ Carotenoids are a family of antioxidant compounds that we obtain from fruits and

vegetables.

∠ Main goal: Predictive value of blood carotenoid concentration in cardiometabolic

health.

∠ Carotenoid components are measured in a laboratory using techniques with

specific limits of detection and quantification.
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E[glucose] = g−1(α+ γ · Total plasma carotenoid concentration)

∠ Y has right-skewed distribution → g = log

i.e. assume Zi is related to Yi in log scale

E[Yi | Zi] = exp{α+ γZi}

∠ Yi | Zi Gamma or Gaussian distributed

Gaussian → Var(Yi | Zi) = ϕ

Gamma → Var(Yi | Zi) = ϕµ2i
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Estimation results

E[glucose] = g−1(α+ γ · Carotenoid concentration)

Regression parameters:

α̂ γ̂ ϕ̂

Gaussian 4.76 -0.009 720

Gamma 4.76 -0.008 0.043

The distinction is on the variance:

Gaussian → Var(Y | Zi) = 720

Gamma → Var(Y | Zi) ∈ [312, 584]

The resulting Ŵ under both models:

For z ∈ Ik = ⌊qj , pj⌋,

Ŵ (z) =
∑

Ij≺Ik

ŵj + ŵk
z − qk

pk − qk

∠ Mean glucose levels decrease 0.9% for each unit increase in total plasma carotenoid

concentration
(
E[Y | z + 1] = eγ̂ × E[Y | z]

)
.

∠ From interval-censored measurements, the model is able to identify the non-parametric estimator

distribution of W .
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Quantile residuals

For each model and individual i,

ri = Φ−1(F (yi | xi, Zi ∈ ⌊zli , zri⌋; α̂, β̂, γ̂, ϕ̂))

= Φ−1(EZi
[F (yi; µ̂i, ϕ̂) | zli , zri ])

and ri ∼ N(0, 1) if the distribution resembles the true one.
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Summary

� We have developed an algorithm for modeling responses with interval-censored

covariates that does not require prior knowledge of the covariate support.

3 Essential: derive the standard error and asymptotic distribution to provide

confidence intervals for θ̂.

3 Desirable: proof for the consistency of θ̂.

� Provide an R package to facilitate its use in applied research.
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