Model fitting and goodness-of-fit for generalized linear models when covariates are interval-censored

Andrea Toloba Klaus Langohr Guadalupe Gómez Melis

Department of Statistics and Operations Research Universitat Politècnica de Catalunya·BarcelonaTech

July 11, 2024

Overview

- 1. Interval-censored covariates
	- > What's interval censoring?
	- **S** Construction of the likelihood function
- 2. Parameter estimation

G´omez G, Espinal A and Lagakos SW (2003) Inference for a linear regression model with an interval-censored covariate. Stat in Med, 22(3), 409–425

- \rightarrow Alternative approach that doesn't rely on discretization
- \geq In the context of GLMs
- 3. Goodness-of-fit
	- \rightarrow Typical residuals for GLMs are not well-defined
	- \rightarrow Extending definitions / exploring new residuals (work in progress)
- 4. Chromatography illustration

Interval censoring: Survival illustration

The time-to-event variable Z is interval-censored in $|Z_L, Z_R|$ if the exact value of Z is not observed, but it is known to lie within the time interval $[Z_L, Z_R]$.

Interval censoring: Survival illustration

The time-to-event variable Z is interval-censored in $|Z_L, Z_R|$ if the exact value of Z is not observed, but it is known to lie within the time interval $|Z_L, Z_R|$.

O Response variable: Time to breast retraction in early breast cancer patients

- Radiotherapy and adjuvant chemotherapy v.s. Radiotherapy alone
- Main goal: Effect of treatment in cosmetic appearance
- $\overline{}$ Cosmetic deterioration $=$ manifestation of breast retraction
- Scheduled visits every 4 to 6 months

Beadle et al. (1984) Cosmetic results following primary radiation therapy for early breast cancer. Cancer, 54(12), 2911–2918 2/18

Interval censoring: Chromatography illustration

The measurement variable Z is interval-censored in $[Z_L, Z_R]$ if the exact value of Z is not observed, but it is known to lie within the interval $[Z_L, Z_R]$.

Interval censoring: Chromatography illustration

The measurement variable Z is interval-censored in $|Z_L, Z_R|$ if the exact value of Z is not observed, but it is known to lie within the interval $|Z_L, Z_R|$.

 \circ Explanatory variable: Total plasma carotenoid concentration (Z)

- Carotenoids are a family of antioxidant compounds that we obtain from fruits and vegetables.
- Main goal: Predictive value of blood carotenoid concentration in cardiometabolic health.
- Carotenoid components are measured in a laboratory using techniques with specific limits of detection and quantification.

Interval censoring: Chromatography illustration

The measurement variable Z is interval-censored in $|Z_L, Z_R|$ if the exact value of Z is not observed, but it is known to lie within the interval $|Z_L, Z_R|$.

 \bullet Explanatory variable: Total plasma carotenoid concentration (Z)

- Carotenoids are a family of antioxidant compounds that we obtain from fruits and vegetables.
- Main goal: Predictive value of blood carotenoid concentration in cardiometabolic health.
- Carotenoid components are measured in a laboratory using techniques with specific limits of detection and quantification.

Marhuenda-Muñoz M et al. (2022) Circulating carotenoids are associated with favorable lipid and fatty acid profiles in an older population at high cardiovascular risk. Front Nutr, 9, 967967

INSA®

 $pred\ddot{m}$ ed $\ddot{\theta}$ ^{fus}

INSA-UB: Research Institute of Nutrition and Food Safety at the University of Barcelona Predimed-Plus: Spanish multicenter randomized trial of primary cardiovascular prevention

Gómez Melis G, Marhuenda-Muñoz M and Langohr K (2022) Regression Analysis with Interval-Censored Covariates. Application to Liquid Chromatography. In: Sun J and Chen DG (eds) Emerging Topics in Modeling Interval-Censored Survival Data (pp. 271–294)

Generalized linear model

$$
\mu = \mathsf{E}(Y|\mathbf{X}, Z) = g^{-1}(\alpha + \beta' \mathbf{X} + \gamma Z)
$$

where

- \rightarrow g(\cdot) monotonic differentiable link function
- $\boldsymbol{\Sigma} = (X_1, \ldots, X_p)'$ covariates
- \triangleright Z with distribution function $W(\cdot)$ and $Z \in [Z_L, Z_R]$
- \rightarrow Y discrete or continuous, belonging to ψ -exponential family of distributions

$$
f(y | \psi = \psi(\mu), \phi) = h(y, \phi) \exp[\{y\psi - a(\psi)\}/\phi]
$$

 \rightarrow First two moments of Y: $\mu = \dot{a}(\psi)$ and $\text{Var}(Y | \mathbf{X}, Z) = \phi \ddot{a}(\psi)$

Goal: Estimate $\boldsymbol{\theta} = (\alpha, \beta', \gamma, \phi)'$ where ϕ represents the dispersion of the model.

Likelihood functions: full and simplified

$$
L_{\text{full}} = \prod_{i=1}^{n} P(Y \in dy_i, \mathbf{X} \in d\mathbf{x_i}, Z_i \in [z_{l_i}, z_{r_i}], Z_L \in dz_{l_i}, Z_R \in dz_{r_i})
$$

Likelihood functions: full and simplified

$$
L_{\text{full}} = \prod_{i=1}^{n} P(Y \in dy_i, \mathbf{X} \in d\mathbf{x_i}, Z_i \in [z_{l_i}, z_{r_i}], Z_L \in dz_{l_i}, Z_R \in dz_{r_i})
$$

$$
L_{\text{simp}}(\boldsymbol{\theta}, W(\cdot)) = \prod_{i=1}^{n} P(Y \in dy_i, \boldsymbol{X} \in d\boldsymbol{x_i}, Z_i \in [z_{l_i}, z_{r_i}])
$$

=
$$
\prod_{i=1}^{n} \int_{z_{l_i}}^{z_{r_i}} f_{Y|\boldsymbol{X}, Z}(y_i | \boldsymbol{x_i}, s; \boldsymbol{\theta}) dW(s | \boldsymbol{x_i}) P(\boldsymbol{X} \in d\boldsymbol{x_i}) ds
$$

$$
\propto \prod_{i=1}^{n} \int_{z_{l_i}}^{z_{r_i}} f_{Y|\boldsymbol{X}, Z}(y_i | \boldsymbol{x_i}, s; \boldsymbol{\theta}) dW(s)
$$

Likelihood functions: full and simplified

$$
L_{\text{full}} = \prod_{i=1}^{n} P(Y \in dy_i, \mathbf{X} \in d\mathbf{x_i}, Z_i \in [z_{l_i}, z_{r_i}], Z_L \in dz_{l_i}, Z_R \in dz_{r_i})
$$

$$
L_{\text{simp}}(\boldsymbol{\theta}, W(\cdot)) = \prod_{i=1}^{n} P(Y \in dy_i, \boldsymbol{X} \in d\boldsymbol{x_i}, Z_i \in [z_{l_i}, z_{r_i}])
$$

=
$$
\prod_{i=1}^{n} \int_{z_{l_i}}^{z_{r_i}} f_{Y|\boldsymbol{X}, Z}(y_i | \boldsymbol{x_i}, s; \boldsymbol{\theta}) dW(s | \boldsymbol{x_i}) P(\boldsymbol{X} \in d\boldsymbol{x_i}) ds
$$

$$
\propto \prod_{i=1}^{n} \int_{z_{l_i}}^{z_{r_i}} f_{Y|\boldsymbol{X}, Z}(y_i | \boldsymbol{x_i}, s; \boldsymbol{\theta}) dW(s)
$$

Assumptions for $L_{\text{simp}} \propto L_{\text{full}}$:

 \rightarrow Non-informative censoring [1]

$$
dW(z \mid Z_L = z_l, Z_R = z_r) = \frac{dW(z)}{P(z_l \leq Z \leq z_r)}
$$

 \rightarrow Y and (Z_L, Z_R) conditional independent given Z

[1] Oller R, Gómez Melis G and Calle ML (2004) Interval censoring: model characterizations for the validity of the simplified likelihood. Can J Stat, 32(3), 315–326

Observations y_i provide crucial information about W

Parameter estimation: an EM-type algorithm

Maximization of

$$
l(\boldsymbol{\theta}, W(\cdot)) = \sum_{i=1}^{n} \log \left\{ \int_{z_{l_i}}^{z_{r_i}} f(y_i \mid \boldsymbol{x_i}, s; \boldsymbol{\theta}) dW(s) \right\}
$$

over $\theta \in \mathbb{R}^{p+2} \times \mathbb{R}^+$ and $W : \Omega \subseteq \mathbb{R} \to [0,1]$ distribution function.

- \geq Set up initial conditions and iterate between the maximization of l with respect to W and θ .
- \rightarrow Differentiating the functional $l(W | \theta)$ and equating to zero yields the self-consistent equations in A).
- \rightarrow The EM-type algorithm is defined by

$$
\begin{pmatrix}\n\mathbf{A} & \widehat{W}(z_0) = \frac{1}{n} \sum_{i=1}^n \frac{\int_{z_{l_i}}^{z_{r_i}} f(y_i | \mathbf{x}_i, s; \hat{\boldsymbol{\theta}}) dW(s \wedge z_0)}{\int_{z_{l_i}}^{z_{r_i}} f(y_i | \mathbf{x}_i, s; \hat{\boldsymbol{\theta}}) dW(s)} \\
\mathbf{B} & \hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\text{argmax}} \sum_{i=1}^n \log \left\{ \int_{z_{l_i}}^{z_{r_i}} f(y_i | \mathbf{x}_i, s; \boldsymbol{\theta}) d\widehat{W}(s) \right\}\n\end{pmatrix}
$$

where $s \wedge z_0 = \min\{s, z_0\}.$

Parameter estimation: construction of partition intervals

$$
l(\theta, W(\cdot)) = \sum_{i=1}^{n} \log \left\{ \int_{z_{l_i}}^{z_{r_i}} f(y_i | \mathbf{x_i}, s; \theta) dW(s) \right\}
$$

$$
\begin{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 1 \end{bmatrix} \\ \begin{bmatrix} 1 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 1 \end{bmatrix} \\ \begin{bmatrix} 1 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 1 \end{bmatrix} \\ \begin{bmatrix} 1 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 1 \end{bmatrix} \\ \begin{bmatrix} 1 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 1 \end{bmatrix} \\ \begin{bmatrix} 1 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 1 \end{bmatrix} \\ \begin{bmatrix} 1 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 1 \end{bmatrix} \\ \begin{bmatrix} 1 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 1 \end{bmatrix} \\ \begin{bmatrix} 1 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 1 \end{bmatrix} \\ \begin{bmatrix} 1 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 1 \end{bmatrix} \end{bmatrix} \end{bmatrix}
$$

Parameter estimation: construction of partition intervals

$$
l(\theta, W(\cdot)) = \sum_{i=1}^{n} \log \left\{ \int_{z_{l_i}}^{z_{r_i}} f(y_i | \mathbf{x_i}, s; \theta) dW(s) \right\}
$$

$$
\begin{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 1 \end{bmatrix} \\ \begin{bmatrix} 1 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 1 \end{bmatrix} \\ \begin{bmatrix} 1 & 1 \end{bmatrix} & \frac{1}{z_{l_1}} & \frac{1}{z_{l_2}} & \frac{1}{z_{l_3}} & \frac{1}{z_{l_4}} & \frac{1}{z_{l_4}} \\ \begin{bmatrix} 1 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 1 \end{bmatrix} \end{bmatrix}
$$

 $\{I_j\}_{j=1}^{m_n}$ is a partition of the support $\Omega=[0,z_{r_5}]$ such that

$$
l(\boldsymbol{\theta}, W(\cdot)) = \sum_{i=1}^{n} \log \left\{ \sum_{j=1}^{m_n} \kappa_j^i \int_{I_j} f(y_i \mid \boldsymbol{x_i}, s; \boldsymbol{\theta}) dW(s) \right\}
$$

where $\kappa^i_j = \mathbb{1}\{I_j \subseteq \lfloor z_{l_i}, z_{r_i} \rfloor\}.$

Parameter estimation: redefinition of the maximization problem

- \rightarrow Assume W is uniform in I_j for all $j = 1, \ldots, m_n$.
- \rightarrow Then the maximization problem rewrites to

$$
l(\boldsymbol{\theta},\,\boldsymbol{w})=\sum_{i=1}^n\log\bigg\{\sum_{j=1}^{m_n}\kappa_j^i\frac{\hat{w}_j}{|I_j|}\int_{I_j}f(y_i\mid\boldsymbol{x_i},s;\,\boldsymbol{\theta})ds\bigg\}
$$

where $|I_i|$ denotes the length of I_i , over $\theta \in \mathbb{R}^{p+2} \times \mathbb{R}^+$ and w s.t. $\sum^{m_n} w_j = 1$ and $w_j \ge 0$.

 \rightarrow And the EM-type algorithm $(j = 1, \ldots, m_n)$:

$$
\begin{aligned}\n\text{A)} \quad w_j^{(l+1)} &= \frac{1}{n} \sum_{i=1}^n \kappa_j^i \underbrace{\frac{w_j^{(l)}}{|I_j|} \int_{I_j} f(y_i \mid s; \hat{\boldsymbol{\theta}}) ds}_{k=1} \\
\text{B)} \quad \hat{\boldsymbol{\theta}} &= \operatorname{argmax} l(\boldsymbol{\theta} \mid \hat{\boldsymbol{w}})\n\end{aligned}
$$

Solved by Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm, a quasi-Newton method for the numerical search of local maxima.

Diagnostics for GLM assumptions: Pearson and deviance residuals

> <code>Pearson</code> residuals are defined as $r_i^{(P)}=(y_i-\hat{\mu}_i)/\sqrt{V(\hat{\mu}_i)}$, where $V(\cdot)$ is the variance function in $\text{Var}(Y_i) = \phi V(\mu_i)$. Asymptotic normality of $r_i^{(P)}$ follows from the Central Limit Theorem (CLT) applied to Y_i .

Asymptotics for Pearson residuals in case of $Y_i \sim$ Gamma with shape ν and scale $\lambda_i = \mu_i / \nu$. $Y_i = \sum^{\nu}$ $k=1$ U_k with $U_k \sim_{i.i.d.} \text{Exp}(1/\lambda_i)$

By the CLT, the Pearson residual $\sqrt{\nu} \frac{y_i - \hat{\mu}_i}{\sqrt{\hat{\mu}^2}} \rightarrow_d N(0, 1)$ as $\nu \rightarrow \infty$. For the i th Pearson residual to be asymp. normal, the data dispersion $\phi=1/\nu$ should be low.

 \triangleright <code>Deviance</code> residuals are defined as $r_i^{(D)} = \text{sgn}(y_i - \hat{\mu}_i)\sqrt{d(y_i, \hat{\mu}_i)}$, where $d(y_i,\hat\mu_i)=2\;\big\{y_i\big(\psi(y_i)-\psi(\hat\mu_i)\big)-b(\psi(y_i))+b(\psi(\hat\mu_i))\big\}$ is the unit deviance. Asymptotic normality derives from the saddle-point approximation of Y_i 's distribution to the normal.

 \rightarrow Discard Pearson and deviance residuals because their asymptotics are approximations that, in most cases, do not hold.^[2]

^[2]Smyth GK and Dunn PK (2018) Generalized Linear Models With Examples in R. Section 8.6.

Diagnostics for GLM assumptions: Quantile residuals

In the context of a GLM defined by $E[Y \mid \bm{X_i}, Z_i] = \mu_i = g^{-1}(\alpha + \bm{\beta'} \bm{X_i} + \gamma Z_i)$, with predicted mean $\hat{\mu}_i = g^{-1}(\hat{\alpha} + \hat{\beta}' \bm{x_i} + \hat{\gamma} z_i)$,

Quantile residuals are defined by

$$
r_i = \Phi^{-1}(F(y_i; \hat{\mu}_i, \hat{\phi})),
$$

where Φ is the cdf of the standard Normal distribution.

- \geq Consider a gamma GLM with $\phi = 1$ fitted to data
- \geq Observation with $y = 1.2$ and $\hat{\mu} = 3$

Smyth GK and Dunn PK (2018) Generalized Linear Models With Examples in R. Section 8.3.4

Diagnostics for the distributional assumption

- > Denote by F^* the true distribution of Y_i . Then $U_i = F^*(y_i) \sim U(0, 1)$.
- \rightarrow Quantile residuals are normally distributed if $F(\cdot; \hat{\mu}_i, \hat{\phi})$ is good enough for each i .
- $\hat{F}(y_i;\hat{u}_i,\hat{\phi}) = F(y_i \mid X = x_i, Z = z_i; \hat{\alpha}, \hat{\beta}, \hat{\gamma}, \hat{\phi})$, so we define $r_i = \Phi^{-1}(F(y_i \mid \boldsymbol{x_i}, Z_i \in [z_{l_i}, z_{r_i}]; \hat{\alpha}, \hat{\beta}, \hat{\gamma}, \hat{\phi}))$ $= \Phi^{-1}(E_{Z_i}[F(y_i; \hat{\mu}_i, \hat{\phi}) | z_{l_i}, z_{r_i}])$
- \geq It is defined under the true distribution of Z_i . We choose to estimate r_i assuming that Z_i is uniformly distributed within $\lfloor z_{l_i}, z_{r_i} \rfloor$.
- \mathcal{R}^3 Simulation analysis to assess the power of these residuals in validating the distribution assumption.

Next steps

- \rightarrow Possible improvements of the estimation algorithm
	- \Box Alternatives to the assumption of W being uniform in I_i
	- \Box Elaborate a B step analogous to IRLS to improve computational efficiency
	- \Box Kuhn–Tucker conditions to check that \widehat{W} is a global maximum
- \rightarrow Check consistency of the estimator $\hat{\theta}$
- λ Derive standard error and confidence intervals for $\hat{\theta}$
- \rightarrow Adapt diagnostic tools for GLM assumptions
	- \blacktriangleright Quantile residuals to check the distributional assumption
	- \Box Working residuals^[3] to check the linearity of covariates and link function assumptions
	- \Box Outliers / influential observations (Cook's distance^[3])

\heartsuit If everything goes as planned, we'll be publishing by the end of September!

Chromatography illustration

Marhuenda-Mu˜noz M et al. (2022) Circulating carotenoids are associated with favorable lipid and fatty acid profiles in an older population at high cardiovascular risk. Front Nutr, 9, 967967

INSA

 $pred\ddot{m}$ e $d^{\tilde{p}$ hus

INSA-UB: Research Institute of Nutrition and Food Safety at the University of Barcelona Predimed-Plus: Spanish multicenter randomized trial of primary cardiovascular prevention

Total plasma carotenoid concentration (Z)

- \geq Carotenoids are a family of antioxidant compounds that we obtain from fruits and vegetables.
- > Main goal: Predictive value of blood carotenoid concentration in cardiometabolic health.
- \geq Carotenoid components are measured in a laboratory using techniques with specific limits of detection and quantification.

Chromatography illustration

Marhuenda-Muñoz M et al. (2022) Circulating carotenoids are associated with favorable lipid and fatty acid profiles in an older population at high cardiovascular risk. Front Nutr, 9, 967967

INSA®

 $pred\ddot{m}$ ed $\ddot{\theta}^{flux}$

INSA-UB: Research Institute of Nutrition and Food Safety at the University of Barcelona Predimed-Plus: Spanish multicenter randomized trial of primary cardiovascular prevention

Total plasma carotenoid concentration (Z)

- \geq Carotenoids are a family of antioxidant compounds that we obtain from fruits and vegetables.
- $>$ Main goal: Predictive value of blood carotenoid concentration in cardiometabolic health.
- \geq Carotenoid components are measured in a laboratory using techniques with specific limits of detection and quantification.

 $E[$ glucose $]=g^{-1}(\alpha+\gamma\cdot \text{Total plasma carotenoid concentration})$

 \rightarrow Y has right-skewed distribution \rightarrow $g = \log$ i.e. assume Z_i is related to Y_i in log scale $E[Y_i | Z_i] = \exp{\alpha + \gamma Z_i}$

 \rightarrow $Y_i \mid Z_i$ Gamma or Gaussian distributed Gaussian \rightarrow Var $(Y_i | Z_i) = \phi$ Gamma \rightarrow Var $(Y_i \mid Z_i) = \phi \mu_i^2$

Estimation results

 $E[$ glucose $]=g^{-1}(\alpha+\gamma\cdot \textsf{C}$ arotenoid concentration)

Regression parameters:

The distinction is on the variance:

Gaussian \rightarrow Var $(Y | Z_i) = 720$ Gamma \rightarrow Var(Y | Z_i) \in [312, 584] The resulting \widehat{W} under both models:

$$
\begin{aligned} \text{For } z \in I_k &= \lfloor q_j, p_j \rfloor, \\ \widehat{W}(z) &= \sum_{I_j \prec I_k} \hat{w}_j + \hat{w}_k \frac{z - q_k}{p_k - q_k} \end{aligned}
$$

 \geq Mean glucose levels decrease 0.9% for each unit increase in total plasma carotenoid concentration $(E[Y \mid z+1] = e^{\hat{\gamma}} \times E[Y \mid z]).$

> From interval-censored measurements, the model is able to identify the non-parametric estimator distribution of W.

Quantile residuals

For each model and individual i ,

$$
r_i = \Phi^{-1}(F(y_i \mid \mathbf{x_i}, Z_i \in [z_{l_i}, z_{r_i}]; \hat{\alpha}, \hat{\beta}, \hat{\gamma}, \hat{\phi}))
$$

$$
= \Phi^{-1}(E_{Z_i}[F(y_i; \hat{\mu}_i, \hat{\phi}) \mid z_{l_i}, z_{r_i}])
$$

and $r_i \sim N(0, 1)$ if the distribution resembles the true one.

Summary

- $\sqrt{\ }$ We have developed an algorithm for modeling responses with interval-censored covariates that does not require prior knowledge of the covariate support.
- Φ_6^8 Essential: derive the standard error and asymptotic distribution to provide confidence intervals for $\hat{\theta}$.
- $\mathbf{\hat{a}}_{\mathbf{s}}^*$ Desirable: proof for the consistency of $\hat{\theta}$.
- \triangle Provide an R package to facilitate its use in applied research.